Determination of uranium in seawater using chemical co-precipitation-ionic liquid electrodeposition by ICP-OES

IF 1.5 3区 化学 Q3 CHEMISTRY, ANALYTICAL
Chol-Hun Yun, Pyong-Hun Kim, Chol-Jin Jo, Un-Hui Jang
{"title":"Determination of uranium in seawater using chemical co-precipitation-ionic liquid electrodeposition by ICP-OES","authors":"Chol-Hun Yun,&nbsp;Pyong-Hun Kim,&nbsp;Chol-Jin Jo,&nbsp;Un-Hui Jang","doi":"10.1007/s10967-025-09989-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we report a new combined method of chemical coprecipitation-ionic liquid electrodeposition for the determination of trace uranium in seawater. The procedure involves coprecipitation of trace uranium on Fe(OH)<sub>3</sub> upon addition of ferric chloride and electrodeposition of uranium in EMIMBF<sub>4</sub> to determine by inductively coupled plasma optical emission spectrometry(ICP-OES). The solution, which ferric chloride was added to 1 L of seawater sample and adjusted the pH to 4, was placed at 80 °C for 30 min to coprecipitate uranium with iron hydroxide. The precipitate was then dissolved in nitric acid and electrodeposited in EMIMBF<sub>4</sub> to determine uranium by ICP-OES. The coefficient of diffusion (D) of electrodeposition of U (VI) on platinum electrode in EMIMBF<sub>4</sub> was evaluated, which was 3.31 × 10<sup>−9</sup> cm<sup>2</sup>/s. The electrochemistry experiments indicated that the reduction of U (VI) at platinum electrode in EMIMBF<sub>4</sub> was a quasi-reversible single step two-electron transfer. The percent of chemical coprecipitation recovery of U (VI) was 98.9% and recovery in electrodeposition was 99.5%. Using combine of two methods can determined trace uranium in seawater.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"334 3","pages":"2177 - 2184"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-025-09989-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we report a new combined method of chemical coprecipitation-ionic liquid electrodeposition for the determination of trace uranium in seawater. The procedure involves coprecipitation of trace uranium on Fe(OH)3 upon addition of ferric chloride and electrodeposition of uranium in EMIMBF4 to determine by inductively coupled plasma optical emission spectrometry(ICP-OES). The solution, which ferric chloride was added to 1 L of seawater sample and adjusted the pH to 4, was placed at 80 °C for 30 min to coprecipitate uranium with iron hydroxide. The precipitate was then dissolved in nitric acid and electrodeposited in EMIMBF4 to determine uranium by ICP-OES. The coefficient of diffusion (D) of electrodeposition of U (VI) on platinum electrode in EMIMBF4 was evaluated, which was 3.31 × 10−9 cm2/s. The electrochemistry experiments indicated that the reduction of U (VI) at platinum electrode in EMIMBF4 was a quasi-reversible single step two-electron transfer. The percent of chemical coprecipitation recovery of U (VI) was 98.9% and recovery in electrodeposition was 99.5%. Using combine of two methods can determined trace uranium in seawater.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
18.80%
发文量
504
审稿时长
2.2 months
期刊介绍: An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信