Fluorescence ‘turn-on’ sensing of glial fibrillary acidic protein using graphene oxide-quenched copper nanoclusters

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Geneva Indongo, Merin K. Abraham, Greeshma Rajeevan, Arathy B. Kala, Dheyaa Mohammed Dhahir, Sony George
{"title":"Fluorescence ‘turn-on’ sensing of glial fibrillary acidic protein using graphene oxide-quenched copper nanoclusters","authors":"Geneva Indongo,&nbsp;Merin K. Abraham,&nbsp;Greeshma Rajeevan,&nbsp;Arathy B. Kala,&nbsp;Dheyaa Mohammed Dhahir,&nbsp;Sony George","doi":"10.1007/s00604-025-07103-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a fluorescence based sensing platform made to detect glial fibrillary acidic protein (GFAP), a critical biomarker associated with glioblastoma and other astrocytic malignancies. Leveraging the unique optical properties of copper nanoclusters (CuNCs) functionalized with GFAP antibodies (GFAP Ab), the platform incorporates graphene oxide (GO) as a fluorescence quencher to create a highly sensitive turn on sensor responsive to GFAP antigens. The detection mechanism relies on Förster resonance energy transfer (FRET), wherein the binding of GFAP antigens disrupts the GFAP Ab@CuNCs-GO interaction, effectively restoring fluorescence. The CuNCs stabilized with l-cysteine to enhance biocompatibility and stability, exhibited strong green fluorescence with a quantum yield of 1.0%. Graphene oxide efficiently quenched the fluorescence of GFAP Ab@CuNCs therefore enhancing the platform’s sensitivity. The sensor displayed a linear fluorescence response across a GFAP concentration range 0–46 ng/mL, with a detection limit of 32 pg/mL, demonstrating its capability to detect GFAP at clinically relevant levels. Validation of the sensor in biological fluids, including saliva, serum and urine, confirmed its applicability for minimally invasive diagnostics. Situated at the intersection of biosensing and clinical relevance, this study aims to address the need for cost effective and accessible diagnostic and screening tools for glioblastoma.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07103-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a fluorescence based sensing platform made to detect glial fibrillary acidic protein (GFAP), a critical biomarker associated with glioblastoma and other astrocytic malignancies. Leveraging the unique optical properties of copper nanoclusters (CuNCs) functionalized with GFAP antibodies (GFAP Ab), the platform incorporates graphene oxide (GO) as a fluorescence quencher to create a highly sensitive turn on sensor responsive to GFAP antigens. The detection mechanism relies on Förster resonance energy transfer (FRET), wherein the binding of GFAP antigens disrupts the GFAP Ab@CuNCs-GO interaction, effectively restoring fluorescence. The CuNCs stabilized with l-cysteine to enhance biocompatibility and stability, exhibited strong green fluorescence with a quantum yield of 1.0%. Graphene oxide efficiently quenched the fluorescence of GFAP Ab@CuNCs therefore enhancing the platform’s sensitivity. The sensor displayed a linear fluorescence response across a GFAP concentration range 0–46 ng/mL, with a detection limit of 32 pg/mL, demonstrating its capability to detect GFAP at clinically relevant levels. Validation of the sensor in biological fluids, including saliva, serum and urine, confirmed its applicability for minimally invasive diagnostics. Situated at the intersection of biosensing and clinical relevance, this study aims to address the need for cost effective and accessible diagnostic and screening tools for glioblastoma.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信