A novel glass chip based lateral flow immunoassay of albumin

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Xuanxu Nan, Yiyang Wu, Lingyi Xu, Li Yang, Yue Cui
{"title":"A novel glass chip based lateral flow immunoassay of albumin","authors":"Xuanxu Nan,&nbsp;Yiyang Wu,&nbsp;Lingyi Xu,&nbsp;Li Yang,&nbsp;Yue Cui","doi":"10.1007/s10544-025-00744-3","DOIUrl":null,"url":null,"abstract":"<div><p>Lateral flow immunoassays typically rely on optical tests conducted on paper strips. However, the 3D matrix of paper embedded with optical nanoparticles often limits detection sensitivity and the ability of detection instruments to capture signals. This study introduces a novel approach using a glass chip-based lateral flow immunoassay, with albumin as a typical biomarker for detection, enabling the presence of the signal on a flat surface. Compared with traditional paper-based immunoassay, glass-based lateral flow immunoassay has achieved a uniform distribution pattern for albumin detection, lowered the limit of detection from 100 ng/mL to 1 ng/mL, and reduced detection time through an improved liquid mobility system. The glass-based method also shortens the detection time by 28.5% to 147.8 s compared to the traditional method. This research presents a new methodology for lateral flow immunoassays that can be applied to a wide range of biomarkers, with potential benefits for various medical and environmental applications.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-025-00744-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00744-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lateral flow immunoassays typically rely on optical tests conducted on paper strips. However, the 3D matrix of paper embedded with optical nanoparticles often limits detection sensitivity and the ability of detection instruments to capture signals. This study introduces a novel approach using a glass chip-based lateral flow immunoassay, with albumin as a typical biomarker for detection, enabling the presence of the signal on a flat surface. Compared with traditional paper-based immunoassay, glass-based lateral flow immunoassay has achieved a uniform distribution pattern for albumin detection, lowered the limit of detection from 100 ng/mL to 1 ng/mL, and reduced detection time through an improved liquid mobility system. The glass-based method also shortens the detection time by 28.5% to 147.8 s compared to the traditional method. This research presents a new methodology for lateral flow immunoassays that can be applied to a wide range of biomarkers, with potential benefits for various medical and environmental applications.

一种新型的基于玻璃芯片的白蛋白横向流动免疫分析方法
横向流动免疫分析通常依赖于在试纸上进行的光学测试。然而,嵌入光学纳米粒子的三维纸矩阵通常限制了检测灵敏度和检测仪器捕获信号的能力。本研究引入了一种新的方法,使用基于玻璃芯片的横向流动免疫分析法,以白蛋白作为典型的生物标志物进行检测,使信号能够在平面上存在。与传统的纸基免疫分析法相比,玻璃基侧流免疫分析法实现了白蛋白检测的均匀分布模式,将检测限从100 ng/mL降低到1 ng/mL,并通过改进的液体迁移系统缩短了检测时间。与传统方法相比,该方法的检测时间缩短了28.5%,为147.8 s。本研究提出了一种新的横向流动免疫测定方法,可应用于广泛的生物标志物,对各种医疗和环境应用具有潜在的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信