{"title":"A core–shell AZO@ZnO nanostructure for accurate glucose detection with UV-boosted sensitivity","authors":"Qi Mao, Ziyan Liu, Shuai Hu, Weixuan Jing, Fan Zhou, Bian Tian, Xiaoqin Luo, Hexiang Yang, Yijun Zhang, Wei Ren, Zhuangde Jiang","doi":"10.1007/s00604-025-07121-0","DOIUrl":null,"url":null,"abstract":"<p>Advances in micro-nano fabrication technology have enabled flexible electrochemical sensors to utilize micro-nanostructures and nanomaterials. Herein, a 3D AZO@ZnONRs core–shell nanostructure was synthesized using atomic layer deposition and hydrothermal techniques. The structure was employed to fabricate a high-sensitivity glucose sensor capable of precise detection of blood glucose levels and glucose content in sugary beverages. The sensor demonstrated a highly linear response (0–12.5 mM), with a sensitivity of approximately 6.49 µA·mM<sup>−1</sup>·cm<sup>−2</sup> and a detection limit of 1.561 µM. Under ultraviolet light, the sensitivity increased by 1.83-fold. In the presence of interferents such as potassium chloride, sodium chloride, lactic acid, urea, and uric acid, the sensor maintained excellent specificity. Compared to conventional nanorods, this 3D core–shell material preserved the advantages of a high specific surface area while demonstrating enhanced electron transfer capabilities and photosensitivity, enabling reliable detection of glucose at extremely low concentrations. This study systematically analyzed the characteristics of the core–shell nanomaterial and its photocatalytic mechanisms, advancing photocatalytic electrochemical sensing technology.</p>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07121-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in micro-nano fabrication technology have enabled flexible electrochemical sensors to utilize micro-nanostructures and nanomaterials. Herein, a 3D AZO@ZnONRs core–shell nanostructure was synthesized using atomic layer deposition and hydrothermal techniques. The structure was employed to fabricate a high-sensitivity glucose sensor capable of precise detection of blood glucose levels and glucose content in sugary beverages. The sensor demonstrated a highly linear response (0–12.5 mM), with a sensitivity of approximately 6.49 µA·mM−1·cm−2 and a detection limit of 1.561 µM. Under ultraviolet light, the sensitivity increased by 1.83-fold. In the presence of interferents such as potassium chloride, sodium chloride, lactic acid, urea, and uric acid, the sensor maintained excellent specificity. Compared to conventional nanorods, this 3D core–shell material preserved the advantages of a high specific surface area while demonstrating enhanced electron transfer capabilities and photosensitivity, enabling reliable detection of glucose at extremely low concentrations. This study systematically analyzed the characteristics of the core–shell nanomaterial and its photocatalytic mechanisms, advancing photocatalytic electrochemical sensing technology.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.