A core–shell AZO@ZnO nanostructure for accurate glucose detection with UV-boosted sensitivity

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Qi Mao, Ziyan Liu, Shuai Hu, Weixuan Jing, Fan Zhou, Bian Tian, Xiaoqin Luo, Hexiang Yang, Yijun Zhang, Wei Ren, Zhuangde Jiang
{"title":"A core–shell AZO@ZnO nanostructure for accurate glucose detection with UV-boosted sensitivity","authors":"Qi Mao,&nbsp;Ziyan Liu,&nbsp;Shuai Hu,&nbsp;Weixuan Jing,&nbsp;Fan Zhou,&nbsp;Bian Tian,&nbsp;Xiaoqin Luo,&nbsp;Hexiang Yang,&nbsp;Yijun Zhang,&nbsp;Wei Ren,&nbsp;Zhuangde Jiang","doi":"10.1007/s00604-025-07121-0","DOIUrl":null,"url":null,"abstract":"<p>Advances in micro-nano fabrication technology have enabled flexible electrochemical sensors to utilize micro-nanostructures and nanomaterials. Herein, a 3D AZO@ZnONRs core–shell nanostructure was synthesized using atomic layer deposition and hydrothermal techniques. The structure was employed to fabricate a high-sensitivity glucose sensor capable of precise detection of blood glucose levels and glucose content in sugary beverages. The sensor demonstrated a highly linear response (0–12.5 mM), with a sensitivity of approximately 6.49 µA·mM<sup>−1</sup>·cm<sup>−2</sup> and a detection limit of 1.561 µM. Under ultraviolet light, the sensitivity increased by 1.83-fold. In the presence of interferents such as potassium chloride, sodium chloride, lactic acid, urea, and uric acid, the sensor maintained excellent specificity. Compared to conventional nanorods, this 3D core–shell material preserved the advantages of a high specific surface area while demonstrating enhanced electron transfer capabilities and photosensitivity, enabling reliable detection of glucose at extremely low concentrations. This study systematically analyzed the characteristics of the core–shell nanomaterial and its photocatalytic mechanisms, advancing photocatalytic electrochemical sensing technology.</p>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07121-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in micro-nano fabrication technology have enabled flexible electrochemical sensors to utilize micro-nanostructures and nanomaterials. Herein, a 3D AZO@ZnONRs core–shell nanostructure was synthesized using atomic layer deposition and hydrothermal techniques. The structure was employed to fabricate a high-sensitivity glucose sensor capable of precise detection of blood glucose levels and glucose content in sugary beverages. The sensor demonstrated a highly linear response (0–12.5 mM), with a sensitivity of approximately 6.49 µA·mM−1·cm−2 and a detection limit of 1.561 µM. Under ultraviolet light, the sensitivity increased by 1.83-fold. In the presence of interferents such as potassium chloride, sodium chloride, lactic acid, urea, and uric acid, the sensor maintained excellent specificity. Compared to conventional nanorods, this 3D core–shell material preserved the advantages of a high specific surface area while demonstrating enhanced electron transfer capabilities and photosensitivity, enabling reliable detection of glucose at extremely low concentrations. This study systematically analyzed the characteristics of the core–shell nanomaterial and its photocatalytic mechanisms, advancing photocatalytic electrochemical sensing technology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信