Research interest in recent years have centred on advancements of functional nano-systems prepared from waste materials. The primary focus of this work is to develop a nanocatalyst and energy storage material from discarded aluminium foils, thus minimizing the negative impact of used aluminum foil on the soil. In this study, copper (I) oxide nanostructures were synthesized using waste aluminium foils by simple displacement method. The prepared material was applied to catalyse the reduction of 4-nitrophenol in the presence of NaBH4, showing excellent activity towards the reduction within 14 min and conversion efficiency of 97% with appreciable reusability. The kinetic studies reveal the pseudo first order nature of the reaction with a rate constant of 0.7783 min−1. Additionally, the inverse relation of rate constants with various concentration of 4-nitrophenol suggests the reduction process follows Langmuir–Hinshelwood mechanism. Moreover, the electrochemical performance of the electrode prepared using Cu2O in 1 M KOH shows significant results, with a specific capacitance of 108 F g−1 at 1 A g−1 and cycling stability of 78% after 5000 continuous charge-discharge cycles. The Nyquist plot data of the synthesized material shows a lower resistance value of 2 Ω, indicating an enhanced electrochemical activity of the nanomaterial. This work proposes a sustainable and eco-friendly approach for utilizing waste materials to prepare multifunctional materials, which have extended applications in the fields of energy and the environment.