Synergistic Adsorption-Photocatalysis Under Sunlight Irradiation of NiO/Graphitic Carbon Nitride Nanocomposite for the Removal of Ciprofloxacin from Wastewater

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Sahar K. Mohamed, Amira M. Elhgrasi, Omnia I. Ali
{"title":"Synergistic Adsorption-Photocatalysis Under Sunlight Irradiation of NiO/Graphitic Carbon Nitride Nanocomposite for the Removal of Ciprofloxacin from Wastewater","authors":"Sahar K. Mohamed,&nbsp;Amira M. Elhgrasi,&nbsp;Omnia I. Ali","doi":"10.1007/s10876-025-02788-0","DOIUrl":null,"url":null,"abstract":"<div><p>A study on the simple synthesis of materials having a synergistic role as photocatalysts when exposed to sunlight irradiation and super-adsorbents in the dark is provided in the present article. NiO@<i>g-</i>C<sub>3</sub>N<sub>4</sub> nanocomposite was prepared by mixing and ultrasonicating graphitic carbon nitride (<i>g-</i>C<sub>3</sub>N<sub>4</sub>) with NiO nanoparticles at a ratio of 1:1. XRD, XPS, BET, DR/UV-Vis spectroscopy, SEM, EDX, and zeta potential analysis were used for the samples’ analysis. XRD pattern of NiO@<i>g</i>-C<sub>3</sub>N<sub>4</sub> conforms to the NiO pattern, with diminished peak strength at the main peak of <i>g</i>-C<sub>3</sub>N<sub>4</sub>, suggesting partial exfoliation of the lamellar <i>g</i>-C<sub>3</sub>N<sub>4</sub> layers during the ultrasonication with NiO. In NiO@<i>g</i>-C<sub>3</sub>N<sub>4</sub>, the <i>g</i>-C<sub>3</sub>N<sub>4</sub> sheets were irregularly covered with NiO nanoplatelets as confirmed by SEM images. Employing ciprofloxacin (CIP) as a pollutant model drug, the adsorption efficiency and various parameters influencing the adsorption process without light irradiation were investigated. The synergistic role of the NiO@<i>g-</i>C<sub>3</sub>N<sub>4</sub> nanocomposite was studied, where it showed a CIP removal of 80% when exposed to sunlight irradiation versus 10% by adsorption in the dark after 60 min. The rate constant values indicated that NiO@<i>g-</i>C<sub>3</sub>N<sub>4</sub> nanocomposite showed a faster photocatalytic degradation rate than bare NiO or bare <i>g-</i>C<sub>3</sub>N<sub>4</sub>. The band gap measurements and the band alignment of NiO and <i>g-</i>C<sub>3</sub>N<sub>4</sub> suggest <i>S</i>-scheme heterojunction’s mechanism, which suppresses the e<sup>−</sup>-h<sup>+</sup> recombination and increases the photocatalytic efficiency. NiO@<i>g-</i>C<sub>3</sub>N<sub>4</sub> nanocomposite could be successfully recycled, where it showed removal of more than 50% of CIP after 4 photocatalysis runs. Moreover, the NiO@<i>g-</i>C<sub>3</sub>N<sub>4</sub> was employed for CIP degradation in real water samples.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10876-025-02788-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02788-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

A study on the simple synthesis of materials having a synergistic role as photocatalysts when exposed to sunlight irradiation and super-adsorbents in the dark is provided in the present article. NiO@g-C3N4 nanocomposite was prepared by mixing and ultrasonicating graphitic carbon nitride (g-C3N4) with NiO nanoparticles at a ratio of 1:1. XRD, XPS, BET, DR/UV-Vis spectroscopy, SEM, EDX, and zeta potential analysis were used for the samples’ analysis. XRD pattern of NiO@g-C3N4 conforms to the NiO pattern, with diminished peak strength at the main peak of g-C3N4, suggesting partial exfoliation of the lamellar g-C3N4 layers during the ultrasonication with NiO. In NiO@g-C3N4, the g-C3N4 sheets were irregularly covered with NiO nanoplatelets as confirmed by SEM images. Employing ciprofloxacin (CIP) as a pollutant model drug, the adsorption efficiency and various parameters influencing the adsorption process without light irradiation were investigated. The synergistic role of the NiO@g-C3N4 nanocomposite was studied, where it showed a CIP removal of 80% when exposed to sunlight irradiation versus 10% by adsorption in the dark after 60 min. The rate constant values indicated that NiO@g-C3N4 nanocomposite showed a faster photocatalytic degradation rate than bare NiO or bare g-C3N4. The band gap measurements and the band alignment of NiO and g-C3N4 suggest S-scheme heterojunction’s mechanism, which suppresses the e-h+ recombination and increases the photocatalytic efficiency. NiO@g-C3N4 nanocomposite could be successfully recycled, where it showed removal of more than 50% of CIP after 4 photocatalysis runs. Moreover, the NiO@g-C3N4 was employed for CIP degradation in real water samples.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信