An ensemble model of knowledge- and data-driven geospatial methods for mapping groundwater potential in a data-scarce, semi-arid fractured rock region

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Stephen G. Fildes, Ian F. Clark, David Bruce, Tom Raimondo
{"title":"An ensemble model of knowledge- and data-driven geospatial methods for mapping groundwater potential in a data-scarce, semi-arid fractured rock region","authors":"Stephen G. Fildes,&nbsp;Ian F. Clark,&nbsp;David Bruce,&nbsp;Tom Raimondo","doi":"10.1007/s13201-025-02407-3","DOIUrl":null,"url":null,"abstract":"<div><p>In remote arid regions of South Australia, local industries, agriculture, mining, and households rely on limited groundwater resources. Data scarcity often leads to drilling unproductive wells when siting new bores. This study introduces an innovative geospatial method for groundwater exploration using an ensemble mapping approach. It combines knowledge- and data-driven machine learning methods: fuzzy analytic hierarchy process (FAHP), multi-influencing factor (MIF), frequency ratio (FR), random forest (RF) and maximum entropy (MaxEnt) to map groundwater potential. The approach leverages the strengths of each method without relying on the bias of a single approach. Morris sensitivity analysis filters areas of higher uncertainty, enhancing knowledge-driven methods before ensemble integration. Spatial representation shortcomings are addressed for key parameters, including drainage density weighted by stream order, terrain curvature integrated into slope models, yield-distance analysis for lineament density, and combining underlying lithology with surface geology to represent water- and non-water-bearing formations at depth. Each groundwater potential model’s performance was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC), with the MIF model producing the lowest AUC of 85.41%. Although the study focuses on the arid township of Leigh Creek in the northern Flinders Ranges, the methodology is applicable to other regions with minimal well datasets worldwide. This research also contributes to addressing the scarcity of geospatial groundwater potential studies in Australia.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02407-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02407-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

In remote arid regions of South Australia, local industries, agriculture, mining, and households rely on limited groundwater resources. Data scarcity often leads to drilling unproductive wells when siting new bores. This study introduces an innovative geospatial method for groundwater exploration using an ensemble mapping approach. It combines knowledge- and data-driven machine learning methods: fuzzy analytic hierarchy process (FAHP), multi-influencing factor (MIF), frequency ratio (FR), random forest (RF) and maximum entropy (MaxEnt) to map groundwater potential. The approach leverages the strengths of each method without relying on the bias of a single approach. Morris sensitivity analysis filters areas of higher uncertainty, enhancing knowledge-driven methods before ensemble integration. Spatial representation shortcomings are addressed for key parameters, including drainage density weighted by stream order, terrain curvature integrated into slope models, yield-distance analysis for lineament density, and combining underlying lithology with surface geology to represent water- and non-water-bearing formations at depth. Each groundwater potential model’s performance was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC), with the MIF model producing the lowest AUC of 85.41%. Although the study focuses on the arid township of Leigh Creek in the northern Flinders Ranges, the methodology is applicable to other regions with minimal well datasets worldwide. This research also contributes to addressing the scarcity of geospatial groundwater potential studies in Australia.

基于知识和数据驱动的地理空间方法的集成模型,用于在数据稀缺的半干旱裂隙岩区绘制地下水潜力图
在南澳大利亚偏远的干旱地区,当地的工业、农业、采矿和家庭都依赖有限的地下水资源。数据缺乏往往导致在新井选址时钻出非生产性井。本研究介绍了一种利用集成制图方法进行地下水勘探的创新地理空间方法。它结合了知识和数据驱动的机器学习方法:模糊层次分析法(FAHP)、多影响因子(MIF)、频率比(FR)、随机森林(RF)和最大熵(MaxEnt)来绘制地下水潜力图。该方法利用了每种方法的优点,而不依赖于单一方法的偏差。莫里斯敏感性分析过滤了较高不确定性的区域,增强了集成集成之前的知识驱动方法。解决了关键参数的空间表征缺陷,包括以河流顺序加权的排水密度、将地形曲率整合到斜坡模型中、对线条密度进行屈服距离分析,以及将下伏岩性与地表地质相结合来表示深度的含水和非含水地层。利用受试者工作特征曲线(ROC)和曲线下面积(AUC)对各模型进行评价,其中MIF模型的AUC最低,为85.41%。虽然该研究主要集中在弗林德斯山脉北部干旱的Leigh Creek镇,但该方法也适用于全球其他井数据集最少的地区。该研究还有助于解决澳大利亚地下水地理空间潜力研究的稀缺性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信