Leveraging innovative diagnostics as a tool to contain superbugs

IF 1.8 3区 生物学 Q4 MICROBIOLOGY
Ngozi J. Anyaegbunam, Kenneth Emenike Okpe, Aisha Bisola Bello, Theophilus Izuchukwu Ajanaobionye, Chukwuma Christian Mgboji, Aanuoluwapo Olonade, Zikora Kizito Glory Anyaegbunam, Ifeanyi Elibe Mba
{"title":"Leveraging innovative diagnostics as a tool to contain superbugs","authors":"Ngozi J. Anyaegbunam,&nbsp;Kenneth Emenike Okpe,&nbsp;Aisha Bisola Bello,&nbsp;Theophilus Izuchukwu Ajanaobionye,&nbsp;Chukwuma Christian Mgboji,&nbsp;Aanuoluwapo Olonade,&nbsp;Zikora Kizito Glory Anyaegbunam,&nbsp;Ifeanyi Elibe Mba","doi":"10.1007/s10482-025-02075-y","DOIUrl":null,"url":null,"abstract":"<div><p>The evolutionary adaptation of pathogens to biological materials has led to an upsurge in drug-resistant superbugs that significantly threaten public health. Treating most infections is an uphill task, especially those associated with multi-drug-resistant pathogens, biofilm formation, persister cells, and pathogens that have acquired robust colonization and immune evasion mechanisms. Innovative diagnostic solutions are crucial for identifying and understanding these pathogens, initiating efficient treatment regimens, and curtailing their spread. While next-generation sequencing has proven invaluable in diagnosis over the years, the most glaring drawbacks must be addressed quickly. Many promising pathogen-associated and host biomarkers hold promise, but their sensitivity and specificity remain questionable. The integration of CRISPR-Cas9 enrichment with nanopore sequencing shows promise in rapid bacterial diagnosis from blood samples. Moreover, machine learning and artificial intelligence are proving indispensable in diagnosing pathogens. However, despite renewed efforts from all quarters to improve diagnosis, accelerated bacterial diagnosis, especially in Africa, remains a mystery to this day. In this review, we discuss current and emerging diagnostic approaches, pinpointing the limitations and challenges associated with each technique and their potential to help address drug-resistant bacterial threats. We further critically delve into the need for accelerated diagnosis in low- and middle-income countries, which harbor more infectious disease threats. Overall, this review provides an up-to-date overview of the diagnostic approaches needed for a prompt response to imminent or possible bacterial infectious disease outbreaks.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"118 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10482-025-02075-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10482-025-02075-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The evolutionary adaptation of pathogens to biological materials has led to an upsurge in drug-resistant superbugs that significantly threaten public health. Treating most infections is an uphill task, especially those associated with multi-drug-resistant pathogens, biofilm formation, persister cells, and pathogens that have acquired robust colonization and immune evasion mechanisms. Innovative diagnostic solutions are crucial for identifying and understanding these pathogens, initiating efficient treatment regimens, and curtailing their spread. While next-generation sequencing has proven invaluable in diagnosis over the years, the most glaring drawbacks must be addressed quickly. Many promising pathogen-associated and host biomarkers hold promise, but their sensitivity and specificity remain questionable. The integration of CRISPR-Cas9 enrichment with nanopore sequencing shows promise in rapid bacterial diagnosis from blood samples. Moreover, machine learning and artificial intelligence are proving indispensable in diagnosing pathogens. However, despite renewed efforts from all quarters to improve diagnosis, accelerated bacterial diagnosis, especially in Africa, remains a mystery to this day. In this review, we discuss current and emerging diagnostic approaches, pinpointing the limitations and challenges associated with each technique and their potential to help address drug-resistant bacterial threats. We further critically delve into the need for accelerated diagnosis in low- and middle-income countries, which harbor more infectious disease threats. Overall, this review provides an up-to-date overview of the diagnostic approaches needed for a prompt response to imminent or possible bacterial infectious disease outbreaks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
11.50%
发文量
104
审稿时长
3 months
期刊介绍: Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信