Tribofilm Formation by Fe3O4 Nanoparticles as Lubricant Additives: Microscopic Insights into Growth Conditions and Mechanisms

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Longji Guo, Yanan Yin, Lina Gao, Hao Lin, Yuzhen Liu, Kai Le, Xu Zhao, Xu Chen, Shusheng Xu
{"title":"Tribofilm Formation by Fe3O4 Nanoparticles as Lubricant Additives: Microscopic Insights into Growth Conditions and Mechanisms","authors":"Longji Guo,&nbsp;Yanan Yin,&nbsp;Lina Gao,&nbsp;Hao Lin,&nbsp;Yuzhen Liu,&nbsp;Kai Le,&nbsp;Xu Zhao,&nbsp;Xu Chen,&nbsp;Shusheng Xu","doi":"10.1007/s11249-025-01988-z","DOIUrl":null,"url":null,"abstract":"<div><p>Current research concerning Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) as lubricant additives primarily focuses on the macroscale tribological performance, with insufficient exploration of anti-wear mechanisms at the microscopic scale. In this study, the formation and growth behavior of Fe<sub>3</sub>O<sub>4</sub>-based tribofilms was investigated. Oleic acid-modified Fe<sub>3</sub>O<sub>4</sub> NPs dispersed in a polyalphaolefin base oil were tested between ZrO<sub>2</sub> balls and GCr15 steel substrates utilizing a reciprocating micro-tribometer. The morphology, microstructure, and chemical composition of tribofilms were meticulously characterized. Results revealed that the tribofilm primarily consisted of cubic Fe<sub>3</sub>O<sub>4</sub> nanocrystals, consistent with initial particles. The organic modification layers of NPs were removed, facilitating direct inter-particle bonding. Growth mechanisms of tribofilms involving tribosintering of Fe<sub>3</sub>O<sub>4</sub> NPs and shear-induced removal were proposed, demonstrating strong dependence on sliding cycles and contact pressure. Under an initial contact pressure of 1.15 GPa, the volume of the tribofilm increased with the number of sliding cycles, eventually reaching a state of saturation. While stress-dependent growth was observed, excessive stress led to wear on the substrate.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-025-01988-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-01988-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current research concerning Fe3O4 nanoparticles (NPs) as lubricant additives primarily focuses on the macroscale tribological performance, with insufficient exploration of anti-wear mechanisms at the microscopic scale. In this study, the formation and growth behavior of Fe3O4-based tribofilms was investigated. Oleic acid-modified Fe3O4 NPs dispersed in a polyalphaolefin base oil were tested between ZrO2 balls and GCr15 steel substrates utilizing a reciprocating micro-tribometer. The morphology, microstructure, and chemical composition of tribofilms were meticulously characterized. Results revealed that the tribofilm primarily consisted of cubic Fe3O4 nanocrystals, consistent with initial particles. The organic modification layers of NPs were removed, facilitating direct inter-particle bonding. Growth mechanisms of tribofilms involving tribosintering of Fe3O4 NPs and shear-induced removal were proposed, demonstrating strong dependence on sliding cycles and contact pressure. Under an initial contact pressure of 1.15 GPa, the volume of the tribofilm increased with the number of sliding cycles, eventually reaching a state of saturation. While stress-dependent growth was observed, excessive stress led to wear on the substrate.

Graphical Abstract

Fe3O4纳米颗粒作为润滑剂添加剂形成摩擦膜:生长条件和机制的微观观察
目前关于纳米Fe3O4作为润滑油添加剂的研究主要集中在宏观尺度上的摩擦学性能,而对微观尺度上的抗磨机理的探索不足。本文研究了fe3o4基摩擦膜的形成和生长行为。利用往复微摩擦计在ZrO2球和GCr15钢衬底之间测试了分散在聚α -烯烃基础油中的油酸改性Fe3O4 NPs。对摩擦膜的形貌、微观结构和化学成分进行了细致的表征。结果表明,摩擦膜主要由立方Fe3O4纳米晶组成,与初始颗粒一致。纳米粒子的有机修饰层被去除,促进了粒子间的直接键合。提出了Fe3O4 NPs摩擦烧结和剪切去除的摩擦膜生长机制,表明其与滑动循环和接触压力密切相关。在初始接触压力为1.15 GPa时,摩擦膜的体积随着滑动循环次数的增加而增大,最终达到饱和状态。当观察到应力依赖生长时,过大的应力导致基体磨损。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信