Min Yang, Yuting Han, Yujie Chang, Chengbo Li, Donghong Niu
{"title":"Transcriptomic and Metabolomic Analyses Reveal Response Mechanisms of Sinonovacula Constricta to Saline-Alkalinity Stresses","authors":"Min Yang, Yuting Han, Yujie Chang, Chengbo Li, Donghong Niu","doi":"10.1007/s10126-025-10445-w","DOIUrl":null,"url":null,"abstract":"<div><p>The razor clam (<i>Sinonovacula constricta</i>) is a key species in marine aquaculture, known for its wide salinity adaptation, and potential for cultivation in saline-alkaline water. Understanding its response mechanisms is crucial for expanding its farming into these regions. This study reveals the response mechanisms of <i>S. constricta</i> in response to low-salinity alkaline stress through a combined analysis of transcriptomics and metabolomics. After 24 h of salt-alkali stress (SA group), 1378 differentially expressed genes (DEGs) were identified, with enriched pathways including glycerophospholipid metabolism, serine, taurine, and hypotaurine metabolism. Additionally, 341 significantly different metabolites (SDMs) were found, primarily involved in taurine and hypotaurine metabolism, purine metabolism, and the FoxO signaling pathway, etc. Both DEGs and SDMs were notably enriched in hypotaurine metabolism, glycerophospholipid metabolism, and the mTOR signaling pathway, showing significant upregulation in the SA group. Correlation analysis found that the integrated regulatory network was involved in the synthesis of taurine, glycerophospholipids, and L-glutamic acid, and the metabolism of 3-mercaptopropionic acid. These results suggest that low salinity and alkalinity induce stress responses in <i>S. constricta</i> by regulating osmotic balance, phospholipid synthesis, and lipid metabolism. This study offers insights into the molecular mechanisms of salt-alkali response in <i>S. constricta</i>. </p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-025-10445-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The razor clam (Sinonovacula constricta) is a key species in marine aquaculture, known for its wide salinity adaptation, and potential for cultivation in saline-alkaline water. Understanding its response mechanisms is crucial for expanding its farming into these regions. This study reveals the response mechanisms of S. constricta in response to low-salinity alkaline stress through a combined analysis of transcriptomics and metabolomics. After 24 h of salt-alkali stress (SA group), 1378 differentially expressed genes (DEGs) were identified, with enriched pathways including glycerophospholipid metabolism, serine, taurine, and hypotaurine metabolism. Additionally, 341 significantly different metabolites (SDMs) were found, primarily involved in taurine and hypotaurine metabolism, purine metabolism, and the FoxO signaling pathway, etc. Both DEGs and SDMs were notably enriched in hypotaurine metabolism, glycerophospholipid metabolism, and the mTOR signaling pathway, showing significant upregulation in the SA group. Correlation analysis found that the integrated regulatory network was involved in the synthesis of taurine, glycerophospholipids, and L-glutamic acid, and the metabolism of 3-mercaptopropionic acid. These results suggest that low salinity and alkalinity induce stress responses in S. constricta by regulating osmotic balance, phospholipid synthesis, and lipid metabolism. This study offers insights into the molecular mechanisms of salt-alkali response in S. constricta.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.