Treatment of Bleomycin-induced Pulmonary Fibrosis by Intratracheal Instillation Administration of Ellagic Acid-Loaded Chitosan Nanoparticles

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Zhilin Luo, Yao Sun, Shihao Cai, Hongting Liu, Conglu Zhao, Xiang Xu, Aiguo Xu, Honggang Zhou, Cheng Yang, Xiaoting Gu, Xiaoyu Ai
{"title":"Treatment of Bleomycin-induced Pulmonary Fibrosis by Intratracheal Instillation Administration of Ellagic Acid-Loaded Chitosan Nanoparticles","authors":"Zhilin Luo,&nbsp;Yao Sun,&nbsp;Shihao Cai,&nbsp;Hongting Liu,&nbsp;Conglu Zhao,&nbsp;Xiang Xu,&nbsp;Aiguo Xu,&nbsp;Honggang Zhou,&nbsp;Cheng Yang,&nbsp;Xiaoting Gu,&nbsp;Xiaoyu Ai","doi":"10.1208/s12249-025-03086-8","DOIUrl":null,"url":null,"abstract":"<div><p>Idiopathic Pulmonary Fibrosis (IPF) is a rare and serious chronic interstitial lung disease that may endanger the lives of patients. The median survival time of patients with idiopathic pulmonary fibrosis is short, and the mortality rate is higher than that of many types of cancer. At present, pirfenidone (PFD) and nintedanib (NDNB) have been approved by FDA for IPF, but they can only delay the process of pulmonary fibrosis and cannot cure the disease. Therefore, it is urgent to develop other drugs with the effect of improving pulmonary fibrosis. Ellagic acid (EA) can inhibit the Wnt-signaling pathway and has an effect in treating pulmonary fibrosis induced by bleomycin (BLM) in mice. However, its solubility is poor, resulting in its low bioavailability and limited therapeutic benefits, so its clinical application has been limited. Herein, based on the characteristics of nano-drug lung delivery system, chitosan (CS) was selected as the carrier, and ellagic acid-loaded chitosan nanoparticles (EA-CS-NPs) were prepared by ionic gelation method. The EE% and DL% of prepared EA-CS-NPs was 73.73 ± 4.52% and 6.23 ± 1.09%, the particle size was 119.6 ± 5.51 nm (PDI = 0.234 ± 0.017), the zeta potential was 29.833 ± 0.503 mV. The morphology of the nanoparticles was observed by TEM microscope, which was round, uniform dispersion, indicating that the preparation process is stable and feasible. The toxicity experiment showed that EA-CS-NPs maintained 80% cell viability, significantly higher than that of the NDNB group, indicating lower toxicity and better inhibitory effects on TGF-β1-stimulated MLg and NIH-3T3 cells. Wound healing assay results showed that the inhibitory effect of EA-CS-NPs on cell migration was more pronounced than that of EA in the same amount of EA-containing drugs. Drug uptake experiments revealed that EA-CS-NPs significantly enhanced drug uptake in MLg and NIH-3T3 cells. <i>In vivo</i>, Cy7-CS-NPs exhibited higher fluorescence intensity in rat lungs compared to Cy7 solution, indicating better lung retention. The <i>in vivo</i> efficacy test showed that compared with the EA group, EA-CS-NPs could better reduce the area of pulmonary fibrosis and collagen deposition, improve lung function, and have a longer retention time in the lung. In summary, our results revealed that EA-CS-NPs may be a good choice for the treatment of pulmonary fibrosis.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03086-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Idiopathic Pulmonary Fibrosis (IPF) is a rare and serious chronic interstitial lung disease that may endanger the lives of patients. The median survival time of patients with idiopathic pulmonary fibrosis is short, and the mortality rate is higher than that of many types of cancer. At present, pirfenidone (PFD) and nintedanib (NDNB) have been approved by FDA for IPF, but they can only delay the process of pulmonary fibrosis and cannot cure the disease. Therefore, it is urgent to develop other drugs with the effect of improving pulmonary fibrosis. Ellagic acid (EA) can inhibit the Wnt-signaling pathway and has an effect in treating pulmonary fibrosis induced by bleomycin (BLM) in mice. However, its solubility is poor, resulting in its low bioavailability and limited therapeutic benefits, so its clinical application has been limited. Herein, based on the characteristics of nano-drug lung delivery system, chitosan (CS) was selected as the carrier, and ellagic acid-loaded chitosan nanoparticles (EA-CS-NPs) were prepared by ionic gelation method. The EE% and DL% of prepared EA-CS-NPs was 73.73 ± 4.52% and 6.23 ± 1.09%, the particle size was 119.6 ± 5.51 nm (PDI = 0.234 ± 0.017), the zeta potential was 29.833 ± 0.503 mV. The morphology of the nanoparticles was observed by TEM microscope, which was round, uniform dispersion, indicating that the preparation process is stable and feasible. The toxicity experiment showed that EA-CS-NPs maintained 80% cell viability, significantly higher than that of the NDNB group, indicating lower toxicity and better inhibitory effects on TGF-β1-stimulated MLg and NIH-3T3 cells. Wound healing assay results showed that the inhibitory effect of EA-CS-NPs on cell migration was more pronounced than that of EA in the same amount of EA-containing drugs. Drug uptake experiments revealed that EA-CS-NPs significantly enhanced drug uptake in MLg and NIH-3T3 cells. In vivo, Cy7-CS-NPs exhibited higher fluorescence intensity in rat lungs compared to Cy7 solution, indicating better lung retention. The in vivo efficacy test showed that compared with the EA group, EA-CS-NPs could better reduce the area of pulmonary fibrosis and collagen deposition, improve lung function, and have a longer retention time in the lung. In summary, our results revealed that EA-CS-NPs may be a good choice for the treatment of pulmonary fibrosis.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信