Faiyaz Shakeel, Ramadan Al-Shdefat, Mohammad Ali, Usama Ahmad
{"title":"Temperature-dependent solubilization and thermodynamic characteristics of ribociclib in varied {PEG 400 + water} combinations","authors":"Faiyaz Shakeel, Ramadan Al-Shdefat, Mohammad Ali, Usama Ahmad","doi":"10.1186/s13065-025-01461-x","DOIUrl":null,"url":null,"abstract":"<div><p>The solubility and thermodynamic characteristics of ribociclib (RCB), a new anticancer medication, have been assessed in a range of {polyethylene glycol 400 (PEG 400) + water} combinations at 293.2–313.2 K and atmospheric pressure. RCB solubility was determined utilizing the saturation shake flask approach, and “van’t Hoff, Apelblat, Buchowski-Ksiazczak <i>λh</i>, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van’t Hoff models” were utilized to validate the measured experimental data. The uncertainties for the computational predictions were less than 3.0% throughout the validation, indicating an outstanding relationship with the experimental RCB solubility data. PEG 400 mass fraction and temperature both improved the solubility of RCB in mole fraction in the compositions of {PEG 400 + water}. It was discovered that the RCB solubility in mole fraction was greatest in pure PEG 400 (1.04 × 10<sup>− 1</sup>) at 313.2 K and lowest in neat water (1.07 × 10<sup>− 6</sup> at 293.2 K). All of the {PEG 400 + water} mixes under study showed “endothermic and entropy-driven” RCB dissolution, as indicated by the positive values of the estimated thermodynamic parameters. Compared to RCB-water, RCB-PEG 400 exhibited the strongest molecular interactions. PEG 400 offers a great potential for RCB solubilization in water, according to the evaluation’s findings.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01461-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01461-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The solubility and thermodynamic characteristics of ribociclib (RCB), a new anticancer medication, have been assessed in a range of {polyethylene glycol 400 (PEG 400) + water} combinations at 293.2–313.2 K and atmospheric pressure. RCB solubility was determined utilizing the saturation shake flask approach, and “van’t Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van’t Hoff models” were utilized to validate the measured experimental data. The uncertainties for the computational predictions were less than 3.0% throughout the validation, indicating an outstanding relationship with the experimental RCB solubility data. PEG 400 mass fraction and temperature both improved the solubility of RCB in mole fraction in the compositions of {PEG 400 + water}. It was discovered that the RCB solubility in mole fraction was greatest in pure PEG 400 (1.04 × 10− 1) at 313.2 K and lowest in neat water (1.07 × 10− 6 at 293.2 K). All of the {PEG 400 + water} mixes under study showed “endothermic and entropy-driven” RCB dissolution, as indicated by the positive values of the estimated thermodynamic parameters. Compared to RCB-water, RCB-PEG 400 exhibited the strongest molecular interactions. PEG 400 offers a great potential for RCB solubilization in water, according to the evaluation’s findings.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.