Thanh Mai Nguyen Tran, Prabhakar M.N., Dong-Woo Lee, Jung-il Song
{"title":"Enhanced mechanical and thermal properties of green PP composites reinforced with bio-hybrid fibers and agro-waste fillers","authors":"Thanh Mai Nguyen Tran, Prabhakar M.N., Dong-Woo Lee, Jung-il Song","doi":"10.1007/s42114-025-01277-2","DOIUrl":null,"url":null,"abstract":"<div><p>The present work discusses the mechanical and thermal properties of novel green hybrid composites manufactured from a polypropylene (PP) matrix, reinforced by bio-hybrid fibers-short woven flax fiber (SWF) and short basalt fiber (BF)-and agro-waste fillers, such as rice husk powder (RHP). Interfacial bonding was enhanced by a coupling agent, such as maleic anhydride grafted polypropylene (MAPP). These hybrid composites were prepared using the twin-screw extrusion and injection molding process. Extensive tests were conducted to study the effects of reinforcement and MAPP on tensile strength, flexural strength, tensile modulus, flexural modulus, and dynamic mechanical properties. The obtained results showed a large improvement in mechanical properties: tensile strength improved up to 57.68% (from 35.82 to 56.48 MPa), flexural strength improved up to 52.59% (from 58.08 to 88.65 MPa), the value of tensile modulus improved up to 147% (from 2.00 to 4.94 GPa), and flexural modulus improved up to 86.04% from 2.65 to 4.93 GPa—in comparison to a plain 25% SWF/PP composite. DMA represented that the storage modulus increased by 129% from 2159.69 to 4938.20 MPa, while tan delta values reduced by 15%, signifying enhanced stiffness in concert with a reduction in molecular mobility. Thermal analysis exhibited enhanced thermal stability as char residue was increased from 1.82 to 16.81% at 700 °C in the optimum composites containing RHP and MAPP. These morphological and structural characteristics were characterized by using techniques from FTIR and 3D-OM to SEM–EDS; indeed, the enhanced interfacial bonding and homogeneous distribution of reinforcement were verified with MAPP assistance. The findings of this study demonstrate the potential of these green composites for high-performance applications in the automotive and construction industries.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01277-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01277-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The present work discusses the mechanical and thermal properties of novel green hybrid composites manufactured from a polypropylene (PP) matrix, reinforced by bio-hybrid fibers-short woven flax fiber (SWF) and short basalt fiber (BF)-and agro-waste fillers, such as rice husk powder (RHP). Interfacial bonding was enhanced by a coupling agent, such as maleic anhydride grafted polypropylene (MAPP). These hybrid composites were prepared using the twin-screw extrusion and injection molding process. Extensive tests were conducted to study the effects of reinforcement and MAPP on tensile strength, flexural strength, tensile modulus, flexural modulus, and dynamic mechanical properties. The obtained results showed a large improvement in mechanical properties: tensile strength improved up to 57.68% (from 35.82 to 56.48 MPa), flexural strength improved up to 52.59% (from 58.08 to 88.65 MPa), the value of tensile modulus improved up to 147% (from 2.00 to 4.94 GPa), and flexural modulus improved up to 86.04% from 2.65 to 4.93 GPa—in comparison to a plain 25% SWF/PP composite. DMA represented that the storage modulus increased by 129% from 2159.69 to 4938.20 MPa, while tan delta values reduced by 15%, signifying enhanced stiffness in concert with a reduction in molecular mobility. Thermal analysis exhibited enhanced thermal stability as char residue was increased from 1.82 to 16.81% at 700 °C in the optimum composites containing RHP and MAPP. These morphological and structural characteristics were characterized by using techniques from FTIR and 3D-OM to SEM–EDS; indeed, the enhanced interfacial bonding and homogeneous distribution of reinforcement were verified with MAPP assistance. The findings of this study demonstrate the potential of these green composites for high-performance applications in the automotive and construction industries.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.