Xujia Wu, Xinyu Zhao, Lijie Chen, Jing Sun, Zhongran Dai
{"title":"Efficient electrochemical removal of uranium(VI) by ACM@Ni cathode: Performance and mechanism","authors":"Xujia Wu, Xinyu Zhao, Lijie Chen, Jing Sun, Zhongran Dai","doi":"10.1007/s10967-025-10007-3","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, a novel composite cathode material of Ni foam supported by amidoxime cellulose microspheres (ACM@Ni) has been prepared. The removal rate of U(VI) can reach 95% within 4 h under the conditions of 298.15 K, pH = 4 and 1.2 V, which was 5 times faster than the physical adsorption. The adsorption data of U(VI) were consistent with the quasi-first-order kinetic and Freundlich isotherm model, revealing the multilayer chemisorption process of uranium on the ACM-5@Ni cathode. In addition, ACM-5@Ni electrode materials also have potential application prospects in the actual treatment of uranium containing wastewater. XRD and XPS studies show that the U(VI) adsorbed by ACM-5@Ni cathode was reduced to U(IV) in the process of uranium removal.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"334 3","pages":"2477 - 2486"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10967-025-10007-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-025-10007-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a novel composite cathode material of Ni foam supported by amidoxime cellulose microspheres (ACM@Ni) has been prepared. The removal rate of U(VI) can reach 95% within 4 h under the conditions of 298.15 K, pH = 4 and 1.2 V, which was 5 times faster than the physical adsorption. The adsorption data of U(VI) were consistent with the quasi-first-order kinetic and Freundlich isotherm model, revealing the multilayer chemisorption process of uranium on the ACM-5@Ni cathode. In addition, ACM-5@Ni electrode materials also have potential application prospects in the actual treatment of uranium containing wastewater. XRD and XPS studies show that the U(VI) adsorbed by ACM-5@Ni cathode was reduced to U(IV) in the process of uranium removal.
期刊介绍:
An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.