Machine Learning Assisted Characterization of Hidden Metallic Objects

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Marko Šimić;Davorin Ambruš;Vedran Bilas
{"title":"Machine Learning Assisted Characterization of Hidden Metallic Objects","authors":"Marko Šimić;Davorin Ambruš;Vedran Bilas","doi":"10.1109/LSENS.2025.3549923","DOIUrl":null,"url":null,"abstract":"This letter introduces a new method for magnetic polarizability tensor measurement using a pulse induction metal detector and electromagnetic tracking. Machine learning-based object depth estimation is employed to enhance the performance of the standard nonlinear least squares (NLS) inversion method. Experimental validation of the proposed algorithm was conducted in a laboratory environment. A significant improvement in measurement repeatability over the standard NLS inversion indicates the great potential of the proposed approach for enhancing the classification algorithms used in hidden metallic object detection.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10919055/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces a new method for magnetic polarizability tensor measurement using a pulse induction metal detector and electromagnetic tracking. Machine learning-based object depth estimation is employed to enhance the performance of the standard nonlinear least squares (NLS) inversion method. Experimental validation of the proposed algorithm was conducted in a laboratory environment. A significant improvement in measurement repeatability over the standard NLS inversion indicates the great potential of the proposed approach for enhancing the classification algorithms used in hidden metallic object detection.
机器学习辅助表征隐藏金属物体
本文介绍了一种利用脉冲感应金属探测器和电磁跟踪测量磁极化张量的新方法。采用基于机器学习的目标深度估计来提高标准非线性最小二乘(NLS)反演方法的性能。在实验室环境下对该算法进行了实验验证。与标准NLS反演相比,测量可重复性显著提高,表明该方法在增强隐藏金属目标检测中使用的分类算法方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信