{"title":"FORGE: Force-Guided Exploration for Robust Contact-Rich Manipulation Under Uncertainty","authors":"Michael Noseworthy;Bingjie Tang;Bowen Wen;Ankur Handa;Chad Kessens;Nicholas Roy;Dieter Fox;Fabio Ramos;Yashraj Narang;Iretiayo Akinola","doi":"10.1109/LRA.2025.3551637","DOIUrl":null,"url":null,"abstract":"We present FORGE, a method for sim-to-real transfer of force-aware manipulation policies in the presence of significant pose uncertainty. During simulation-based policy learning, FORGE combines a <italic>force threshold</i> mechanism with a <italic>dynamics randomization</i> scheme to enable robust transfer of the learned policies to the real robot. At deployment, FORGE policies, conditioned on a maximum allowable force, adaptively perform contact-rich tasks while avoiding aggressive and unsafe behaviour, regardless of the controller gains. Additionally, FORGE policies predict task success, enabling efficient termination and autonomous tuning of the force threshold. We show that FORGE can be used to learn a variety of robust contact-rich policies, including the forceful insertion of snap-fit connectors. We further demonstrate the multistage assembly of a planetary gear system, which requires success across three assembly tasks: nut threading, insertion, and gear meshing.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4436-4443"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10925874/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present FORGE, a method for sim-to-real transfer of force-aware manipulation policies in the presence of significant pose uncertainty. During simulation-based policy learning, FORGE combines a force threshold mechanism with a dynamics randomization scheme to enable robust transfer of the learned policies to the real robot. At deployment, FORGE policies, conditioned on a maximum allowable force, adaptively perform contact-rich tasks while avoiding aggressive and unsafe behaviour, regardless of the controller gains. Additionally, FORGE policies predict task success, enabling efficient termination and autonomous tuning of the force threshold. We show that FORGE can be used to learn a variety of robust contact-rich policies, including the forceful insertion of snap-fit connectors. We further demonstrate the multistage assembly of a planetary gear system, which requires success across three assembly tasks: nut threading, insertion, and gear meshing.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.