{"title":"Resistance of High-Temperature Superconducting Tapes Triggered by Alternating Magnetic Field","authors":"Quoc Hung Pham;Rainer Nast;Mathias Noe","doi":"10.1109/TASC.2025.3550837","DOIUrl":null,"url":null,"abstract":"Dynamic resistance occurs in a superconducting tape carrying a dc transport current while being exposed to an alternating magnetic field. This effect is caused by flux movements interacting with the transport current. The dynamic resistance is already applied in many superconducting applications, for example, superconducting flux pumps or persistent current switches. The resistance is highly dependent on the magnetic field and the frequency the superconductor is subjected to and its properties. When the dynamic resistance exceeds a certain value and, thus, enters the magnitude of the resistances of the normal conducting layers of the high-temperature superconducting (HTS) tape, these normal conducting layers play a significant role in the total resistance of the tape. In this article, modifications were made to the silver stabilizer, and the total resistance of the HTS tape has been investigated. The experimental results with frequencies up to 1000 Hz and magnetic field up to 277 mT show significant increases in resistance. In addition, a multilayer model based on H-formulation is presented to calculate the losses of the superconductor. The results also show significant heating due to the losses and, therefore, a temperature rise, which affects the measured total resistance. These results can be further used for applications, where high switchable resistances are required with zero dc resistance when the magnet is turned <sc>off</small>.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 3","pages":"1-8"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10924675/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic resistance occurs in a superconducting tape carrying a dc transport current while being exposed to an alternating magnetic field. This effect is caused by flux movements interacting with the transport current. The dynamic resistance is already applied in many superconducting applications, for example, superconducting flux pumps or persistent current switches. The resistance is highly dependent on the magnetic field and the frequency the superconductor is subjected to and its properties. When the dynamic resistance exceeds a certain value and, thus, enters the magnitude of the resistances of the normal conducting layers of the high-temperature superconducting (HTS) tape, these normal conducting layers play a significant role in the total resistance of the tape. In this article, modifications were made to the silver stabilizer, and the total resistance of the HTS tape has been investigated. The experimental results with frequencies up to 1000 Hz and magnetic field up to 277 mT show significant increases in resistance. In addition, a multilayer model based on H-formulation is presented to calculate the losses of the superconductor. The results also show significant heating due to the losses and, therefore, a temperature rise, which affects the measured total resistance. These results can be further used for applications, where high switchable resistances are required with zero dc resistance when the magnet is turned off.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.