Zhenlong Ma;Ning Kang;Fan Yang;Chongyang Hong;Jing Xu;Guojun Yuan;Peiheng Zhang;Zhan Wang;Ninghui Sun
{"title":"Toward Scalable RDMA Through Resource Prefetching","authors":"Zhenlong Ma;Ning Kang;Fan Yang;Chongyang Hong;Jing Xu;Guojun Yuan;Peiheng Zhang;Zhan Wang;Ninghui Sun","doi":"10.1109/LCA.2025.3534188","DOIUrl":null,"url":null,"abstract":"RDMA network is being widely deployed in data centers, high-performance computing, and AI clusters. By offloading the network processing protocol stack to hardware, RDMA bypasses the operating system kernel, thereby enabling high performance and low CPU overhead. However, the protocol processing demands substantial communication resources, and due to the limited hardware resources, commercial NICs (Network Interface Cards) experience a significant number of cache misses in large-scale connection scenarios. This results in performance degradation, indicating that RDMA lacks scalability. In this paper, we first analyze the characteristics of resource access in RDMA. Based on these characteristics, we propose a resource access prediction and prefetching mechanism in the hardware, which preemptively fetches the resources required by the protocol processing pipeline to the on-chip cache. This mechanism increases the NIC’s cache hit ratio. Evaluation results demonstrate that our approach improves throughput by 125% and reduces latency by 17.9% under large-scale communication scenarios.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"77-80"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854661/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
RDMA network is being widely deployed in data centers, high-performance computing, and AI clusters. By offloading the network processing protocol stack to hardware, RDMA bypasses the operating system kernel, thereby enabling high performance and low CPU overhead. However, the protocol processing demands substantial communication resources, and due to the limited hardware resources, commercial NICs (Network Interface Cards) experience a significant number of cache misses in large-scale connection scenarios. This results in performance degradation, indicating that RDMA lacks scalability. In this paper, we first analyze the characteristics of resource access in RDMA. Based on these characteristics, we propose a resource access prediction and prefetching mechanism in the hardware, which preemptively fetches the resources required by the protocol processing pipeline to the on-chip cache. This mechanism increases the NIC’s cache hit ratio. Evaluation results demonstrate that our approach improves throughput by 125% and reduces latency by 17.9% under large-scale communication scenarios.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.