On Forward and Inverse Energy-Based Magnetic Vector Hysteresis Operators

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Herbert Egger;Felix Engertsberger;Lukas Domenig;Klaus Roppert;Manfred Kaltenbacher
{"title":"On Forward and Inverse Energy-Based Magnetic Vector Hysteresis Operators","authors":"Herbert Egger;Felix Engertsberger;Lukas Domenig;Klaus Roppert;Manfred Kaltenbacher","doi":"10.1109/TMAG.2025.3544507","DOIUrl":null,"url":null,"abstract":"Incremental models for magnetic vector hysteresis have been developed in previous works in accordance with basic principles of thermodynamics. In this article, we derive an equivalent representation of the associated hysteresis operator in terms of a co-energy function which is useful for magnetic field computations based on a scalar potential. Using the convex duality, we further define the corresponding energy functional and the associated inverse hysteresis operator which is required for computations based on the vector potential. The equivalence of the two representations with the energy-based hysteresis models proposed in earlier works is demonstrated and numerical results for some typical test problems are presented obtained by finite element simulation of corresponding scalar and vector potential formulations.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 4","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897784","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10897784/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Incremental models for magnetic vector hysteresis have been developed in previous works in accordance with basic principles of thermodynamics. In this article, we derive an equivalent representation of the associated hysteresis operator in terms of a co-energy function which is useful for magnetic field computations based on a scalar potential. Using the convex duality, we further define the corresponding energy functional and the associated inverse hysteresis operator which is required for computations based on the vector potential. The equivalence of the two representations with the energy-based hysteresis models proposed in earlier works is demonstrated and numerical results for some typical test problems are presented obtained by finite element simulation of corresponding scalar and vector potential formulations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信