THz-Enabled UAV Communications Under Pointing Errors: Tractable Statistical Channel Modeling and Security Analysis

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Javad Saber;Mazen Hasna;Osamah S. Badarneh
{"title":"THz-Enabled UAV Communications Under Pointing Errors: Tractable Statistical Channel Modeling and Security Analysis","authors":"Mohammad Javad Saber;Mazen Hasna;Osamah S. Badarneh","doi":"10.1109/OJVT.2025.3547244","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are increasingly being utilized as mobile base stations for rapidly establishing temporary wireless coverage in emergency situations and remote locations. Their high mobility and flexibility make UAVs ideal for quickly deployed communication systems, but these features also introduce unique challenges, particularly in maintaining stable and reliable communication links. The highly directional nature of terahertz (THz) antennas introduces challenges in UAV communication systems. Combined with the mobility of UAVs, this can cause significant issues, such as beam misalignment and signal degradation. Thus, developing accurate radio channel models that address these challenges is critical to ensure reliable communication. In this study, we present an analytical framework focused on evaluating the security performance of highly directional THz-enabled UAV communication links. The challenges analyzed include misalignment of directional beams, path loss, small-scale fading, and UAV-induced vibrations. The small-scale fading is modeled using the <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>–<inline-formula><tex-math>$\\mu$</tex-math></inline-formula> distribution, which accurately represents various fading environments. Using the Meijer G-function, we derive closed-form expressions for key statistical functions, including the probability density function (PDF) and cumulative distribution function (CDF) of the channel gain. Furthermore, a detailed physical-layer security analysis is provided, focusing on metrics such as average secrecy capacity, secrecy outage probability, and the probability of strictly positive secrecy capacity, particularly in the presence of UAV eavesdroppers. Numerical results validate the analytical expressions under different operational conditions, such as beam misalignment and fading, providing valuable insights into the security and performance of THz-enabled UAV communication systems. These results provide important guidelines for optimizing future wireless networks using UAVs and THz frequencies to ensure secure and reliable data transmission in dynamic environments.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"801-811"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908855","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10908855/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAVs) are increasingly being utilized as mobile base stations for rapidly establishing temporary wireless coverage in emergency situations and remote locations. Their high mobility and flexibility make UAVs ideal for quickly deployed communication systems, but these features also introduce unique challenges, particularly in maintaining stable and reliable communication links. The highly directional nature of terahertz (THz) antennas introduces challenges in UAV communication systems. Combined with the mobility of UAVs, this can cause significant issues, such as beam misalignment and signal degradation. Thus, developing accurate radio channel models that address these challenges is critical to ensure reliable communication. In this study, we present an analytical framework focused on evaluating the security performance of highly directional THz-enabled UAV communication links. The challenges analyzed include misalignment of directional beams, path loss, small-scale fading, and UAV-induced vibrations. The small-scale fading is modeled using the $\alpha$$\mu$ distribution, which accurately represents various fading environments. Using the Meijer G-function, we derive closed-form expressions for key statistical functions, including the probability density function (PDF) and cumulative distribution function (CDF) of the channel gain. Furthermore, a detailed physical-layer security analysis is provided, focusing on metrics such as average secrecy capacity, secrecy outage probability, and the probability of strictly positive secrecy capacity, particularly in the presence of UAV eavesdroppers. Numerical results validate the analytical expressions under different operational conditions, such as beam misalignment and fading, providing valuable insights into the security and performance of THz-enabled UAV communication systems. These results provide important guidelines for optimizing future wireless networks using UAVs and THz frequencies to ensure secure and reliable data transmission in dynamic environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信