Roberto Martín López;Sergio de López Diz;Alessandro Faro;Emilio José Bueno Peña;Alessandro Lidozzi
{"title":"Grid-Forming Controller for Multi DC/AC Converter Topology Supplying 25 kVAC Single-Phase Railway Catenary From 3 kVDC","authors":"Roberto Martín López;Sergio de López Diz;Alessandro Faro;Emilio José Bueno Peña;Alessandro Lidozzi","doi":"10.1109/OJIES.2025.3548456","DOIUrl":null,"url":null,"abstract":"One of the primary challenges associated with single-phase AC railway electrification is the unbalance created within the three-phase supply grid. This problem does not arise in DC electrification systems. The aim of this article is to introduce a novel Grid-Forming control strategy, which applied to a power electronics based topology allows the generation of an AC catenary from the DC catenary. Focusing on the capabilities of the control algorithm, the system is presented as a fully scalable solution employing multiple grid-forming DC/AC converters. These converters use power control loops based on the Virtual Synchronous Machine concept, adapted to single-phase operation. A key advantage of this approach is that all converters within the system contribute to supporting both voltage and frequency stability. In addition, the implementation does not require a higher-level controller or communication system. Through an appropriate power control design, the power supplied by each converter, relative to the total load demand, can be determined.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"445-458"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10914004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10914004/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
One of the primary challenges associated with single-phase AC railway electrification is the unbalance created within the three-phase supply grid. This problem does not arise in DC electrification systems. The aim of this article is to introduce a novel Grid-Forming control strategy, which applied to a power electronics based topology allows the generation of an AC catenary from the DC catenary. Focusing on the capabilities of the control algorithm, the system is presented as a fully scalable solution employing multiple grid-forming DC/AC converters. These converters use power control loops based on the Virtual Synchronous Machine concept, adapted to single-phase operation. A key advantage of this approach is that all converters within the system contribute to supporting both voltage and frequency stability. In addition, the implementation does not require a higher-level controller or communication system. Through an appropriate power control design, the power supplied by each converter, relative to the total load demand, can be determined.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.