CGA protects against experimental colitis by modulating host purine metabolism through the gut microbiota

IF 4.8 2区 医学 Q2 IMMUNOLOGY
Xiaolin Ye, Xueying An, Tianzhuo Zhang, Yan Kong, Shuangzhen Jia, Jie Wu
{"title":"CGA protects against experimental colitis by modulating host purine metabolism through the gut microbiota","authors":"Xiaolin Ye,&nbsp;Xueying An,&nbsp;Tianzhuo Zhang,&nbsp;Yan Kong,&nbsp;Shuangzhen Jia,&nbsp;Jie Wu","doi":"10.1016/j.intimp.2025.114547","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Alterations in the gut microbiota may contribute to the development of inflammatory bowel disease (IBD). Chlorogenic acid (CGA), a product of the esterification of caffeic acid and quinic acid, is one of the most abundant polyphenols in the human diet and has potential beneficial effects on gut function. However, the underlying mechanisms remain unclear. In this study, the pharmacological effects of CGA on colitis and the potential underlying mechanisms were investigated.</div></div><div><h3>Methods</h3><div>A mouse model of colitis was induced via the use of 4 % dextran sulfate sodium (DSS), and the mice were treated with 200 mg/kg CGA. Body weight, colon length, colon tissue pathology, and plasma and colon inflammatory cytokine levels were assessed. RNA sequencing was used to detect changes in gene expression in mouse colon tissues, and 16S rRNA sequencing was used to analyze the composition and structure of the gut microbiota. Fecal metabolomic analysis was performed, and fecal microbiota transplantation (FMT) was used to evaluate the contribution of the gut microbiota.</div></div><div><h3>Results</h3><div>CGA significantly alleviated DSS-induced colitis, alleviating intestinal mucosal barrier damage and gut microbiota dysbiosis. It significantly enriched bacteria that produce short-chain fatty acids (SCFAs). CGA inhibited the accumulation of purine metabolites derived from the microbiota and suppressed immune-related signaling cascades, exerting immunomodulatory effects. Furthermore, the gut microbiota of CGA-treated mice alleviated DSS-induced colitis through FMT.</div></div><div><h3>Conclusion</h3><div>CGA alleviates colitis in a gut microbiota-dependent manner, potentially providing a new strategy for the treatment of IBD.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"153 ","pages":"Article 114547"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925005375","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Alterations in the gut microbiota may contribute to the development of inflammatory bowel disease (IBD). Chlorogenic acid (CGA), a product of the esterification of caffeic acid and quinic acid, is one of the most abundant polyphenols in the human diet and has potential beneficial effects on gut function. However, the underlying mechanisms remain unclear. In this study, the pharmacological effects of CGA on colitis and the potential underlying mechanisms were investigated.

Methods

A mouse model of colitis was induced via the use of 4 % dextran sulfate sodium (DSS), and the mice were treated with 200 mg/kg CGA. Body weight, colon length, colon tissue pathology, and plasma and colon inflammatory cytokine levels were assessed. RNA sequencing was used to detect changes in gene expression in mouse colon tissues, and 16S rRNA sequencing was used to analyze the composition and structure of the gut microbiota. Fecal metabolomic analysis was performed, and fecal microbiota transplantation (FMT) was used to evaluate the contribution of the gut microbiota.

Results

CGA significantly alleviated DSS-induced colitis, alleviating intestinal mucosal barrier damage and gut microbiota dysbiosis. It significantly enriched bacteria that produce short-chain fatty acids (SCFAs). CGA inhibited the accumulation of purine metabolites derived from the microbiota and suppressed immune-related signaling cascades, exerting immunomodulatory effects. Furthermore, the gut microbiota of CGA-treated mice alleviated DSS-induced colitis through FMT.

Conclusion

CGA alleviates colitis in a gut microbiota-dependent manner, potentially providing a new strategy for the treatment of IBD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信