Xiaolin Ye, Xueying An, Tianzhuo Zhang, Yan Kong, Shuangzhen Jia, Jie Wu
{"title":"CGA protects against experimental colitis by modulating host purine metabolism through the gut microbiota","authors":"Xiaolin Ye, Xueying An, Tianzhuo Zhang, Yan Kong, Shuangzhen Jia, Jie Wu","doi":"10.1016/j.intimp.2025.114547","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Alterations in the gut microbiota may contribute to the development of inflammatory bowel disease (IBD). Chlorogenic acid (CGA), a product of the esterification of caffeic acid and quinic acid, is one of the most abundant polyphenols in the human diet and has potential beneficial effects on gut function. However, the underlying mechanisms remain unclear. In this study, the pharmacological effects of CGA on colitis and the potential underlying mechanisms were investigated.</div></div><div><h3>Methods</h3><div>A mouse model of colitis was induced via the use of 4 % dextran sulfate sodium (DSS), and the mice were treated with 200 mg/kg CGA. Body weight, colon length, colon tissue pathology, and plasma and colon inflammatory cytokine levels were assessed. RNA sequencing was used to detect changes in gene expression in mouse colon tissues, and 16S rRNA sequencing was used to analyze the composition and structure of the gut microbiota. Fecal metabolomic analysis was performed, and fecal microbiota transplantation (FMT) was used to evaluate the contribution of the gut microbiota.</div></div><div><h3>Results</h3><div>CGA significantly alleviated DSS-induced colitis, alleviating intestinal mucosal barrier damage and gut microbiota dysbiosis. It significantly enriched bacteria that produce short-chain fatty acids (SCFAs). CGA inhibited the accumulation of purine metabolites derived from the microbiota and suppressed immune-related signaling cascades, exerting immunomodulatory effects. Furthermore, the gut microbiota of CGA-treated mice alleviated DSS-induced colitis through FMT.</div></div><div><h3>Conclusion</h3><div>CGA alleviates colitis in a gut microbiota-dependent manner, potentially providing a new strategy for the treatment of IBD.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"153 ","pages":"Article 114547"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925005375","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Alterations in the gut microbiota may contribute to the development of inflammatory bowel disease (IBD). Chlorogenic acid (CGA), a product of the esterification of caffeic acid and quinic acid, is one of the most abundant polyphenols in the human diet and has potential beneficial effects on gut function. However, the underlying mechanisms remain unclear. In this study, the pharmacological effects of CGA on colitis and the potential underlying mechanisms were investigated.
Methods
A mouse model of colitis was induced via the use of 4 % dextran sulfate sodium (DSS), and the mice were treated with 200 mg/kg CGA. Body weight, colon length, colon tissue pathology, and plasma and colon inflammatory cytokine levels were assessed. RNA sequencing was used to detect changes in gene expression in mouse colon tissues, and 16S rRNA sequencing was used to analyze the composition and structure of the gut microbiota. Fecal metabolomic analysis was performed, and fecal microbiota transplantation (FMT) was used to evaluate the contribution of the gut microbiota.
Results
CGA significantly alleviated DSS-induced colitis, alleviating intestinal mucosal barrier damage and gut microbiota dysbiosis. It significantly enriched bacteria that produce short-chain fatty acids (SCFAs). CGA inhibited the accumulation of purine metabolites derived from the microbiota and suppressed immune-related signaling cascades, exerting immunomodulatory effects. Furthermore, the gut microbiota of CGA-treated mice alleviated DSS-induced colitis through FMT.
Conclusion
CGA alleviates colitis in a gut microbiota-dependent manner, potentially providing a new strategy for the treatment of IBD.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.