Xin Shen , Tingting Feng , Shangbin Li , Xingxin Wang , Wenhui Zhang , Shouyan Wang , Xiaohan Zhang , Jiguo Yang , Yuanxiang Liu
{"title":"Leucine enhances the cGAS-STING-NLRP3 pathway in autoimmune thyroiditis","authors":"Xin Shen , Tingting Feng , Shangbin Li , Xingxin Wang , Wenhui Zhang , Shouyan Wang , Xiaohan Zhang , Jiguo Yang , Yuanxiang Liu","doi":"10.1016/j.jtauto.2025.100284","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Branched-chain amino acids (BCAAs), including isoleucine (Ile), leucine (Leu), and valine (Val), are substrates for synthesising nitrogenous compounds and signalling molecules involved in regulating immunity. To date, data on the role of BCAAs in autoimmune thyroiditis (AIT) are lacking; therefore, this study aimed to determine the causality using two-sample Mendelian randomisation (MR) and explored the role of BCAAs in the cGAS-STING-NLRP3 pathway <em>in vitro</em>.</div></div><div><h3>Methods</h3><div>The causal relationship between BCAAs and the pathogenesis of AIT were identified using a two-sample MR study. The anti-inflammatory effects of BCAAs and their role in the cGAS-STING-NLRP3 pathway were investigated in lipopolysaccharide (LPS)- induced thyroid follicular cells (TFCs).</div></div><div><h3>Results</h3><div>Our findings indicate that BCAAs are a pathogenic factor for AIT (IVW OR = 4.960; 95 % CI = (1.54,15.940); <em>P</em> = 0.007). Leu significantly exacerbated the inflammatory response of thyroid cells, as evidenced by the up-regulation of tumour necrosis factor-alpha (TNF-α) and interleukin (IL)-6 and down-regulation of TGF-β1; simultaneously aggravated cellular injury and oxidative stress; significantly increased the expression of Sestrin2/p-mTOR and cGAS/STING/NLRP3 in AIT cells. Furthermore, the expression of IL-18 and IL-1β was significantly increased. Conversely, Leu deprivation induced cell injury, decreased oxidative stress, and inhibited Sestrin2/p-mTOR and cGAS/STING/NLRP3 pathways.</div></div><div><h3>Conclusion</h3><div>Our findings suggest a potential causal effect of genetically predicted Leu on AIT; Leu significantly exacerbated the inflammatory response and cellular damage in AIT cells. The mechanism by which Leu induces inflammation involves activating the promoted Sestrin2/mTOR and cGAS-STING-NLRP3 signalling pathways. Our study proposes a novel mechanism for the contributions of Leu in AIT and potential therapeutic strategies involving Leu deprivation in treating AIT.</div></div>","PeriodicalId":36425,"journal":{"name":"Journal of Translational Autoimmunity","volume":"10 ","pages":"Article 100284"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Autoimmunity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258990902500019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Branched-chain amino acids (BCAAs), including isoleucine (Ile), leucine (Leu), and valine (Val), are substrates for synthesising nitrogenous compounds and signalling molecules involved in regulating immunity. To date, data on the role of BCAAs in autoimmune thyroiditis (AIT) are lacking; therefore, this study aimed to determine the causality using two-sample Mendelian randomisation (MR) and explored the role of BCAAs in the cGAS-STING-NLRP3 pathway in vitro.
Methods
The causal relationship between BCAAs and the pathogenesis of AIT were identified using a two-sample MR study. The anti-inflammatory effects of BCAAs and their role in the cGAS-STING-NLRP3 pathway were investigated in lipopolysaccharide (LPS)- induced thyroid follicular cells (TFCs).
Results
Our findings indicate that BCAAs are a pathogenic factor for AIT (IVW OR = 4.960; 95 % CI = (1.54,15.940); P = 0.007). Leu significantly exacerbated the inflammatory response of thyroid cells, as evidenced by the up-regulation of tumour necrosis factor-alpha (TNF-α) and interleukin (IL)-6 and down-regulation of TGF-β1; simultaneously aggravated cellular injury and oxidative stress; significantly increased the expression of Sestrin2/p-mTOR and cGAS/STING/NLRP3 in AIT cells. Furthermore, the expression of IL-18 and IL-1β was significantly increased. Conversely, Leu deprivation induced cell injury, decreased oxidative stress, and inhibited Sestrin2/p-mTOR and cGAS/STING/NLRP3 pathways.
Conclusion
Our findings suggest a potential causal effect of genetically predicted Leu on AIT; Leu significantly exacerbated the inflammatory response and cellular damage in AIT cells. The mechanism by which Leu induces inflammation involves activating the promoted Sestrin2/mTOR and cGAS-STING-NLRP3 signalling pathways. Our study proposes a novel mechanism for the contributions of Leu in AIT and potential therapeutic strategies involving Leu deprivation in treating AIT.