Integral transform technique for determining stress intensity factor in wave propagation through functionally graded piezoelectric-viscoelastic structure

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Diksha , Soniya Chaudhary , Pawan Kumar Sharma , Qasem M. Al-Mdallal
{"title":"Integral transform technique for determining stress intensity factor in wave propagation through functionally graded piezoelectric-viscoelastic structure","authors":"Diksha ,&nbsp;Soniya Chaudhary ,&nbsp;Pawan Kumar Sharma ,&nbsp;Qasem M. Al-Mdallal","doi":"10.1016/j.camwa.2025.03.021","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs an integral transform approach for Love wave propagation in a rotating composite structure having an interfacial crack. The structure comprises an initially stressed functionally graded piezoelectric-viscoelastic half-space bonded to a piezoelectric-viscoelastic half-space, and is subjected to anti-plane mechanical loading and in-plane electrical loading. The study focuses on two material systems: the first material system consists of Epoxy-BNKLBT and Epoxy-KNLNTS, where BNKLBT stands for <span><math><mn>0.885</mn><mo>(</mo><msub><mrow><mtext>Bi</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><msub><mrow><mtext>Na</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><mo>)</mo><msub><mrow><mtext>TiO</mtext></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>0.05</mn><mo>(</mo><msub><mrow><mtext>Bi</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><msub><mrow><mtext>K</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><mo>)</mo><msub><mrow><mtext>TiO</mtext></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>0.015</mn><mo>(</mo><msub><mrow><mtext>Bi</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>0.5</mn></mrow></msub><mo>)</mo><msub><mrow><mtext>TiO</mtext></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>0.05</mn><msub><mrow><mtext>BaTiO</mtext></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and KNLNTS represents <span><math><mo>(</mo><msub><mrow><mtext>K</mtext></mrow><mrow><mn>0.475</mn></mrow></msub><msub><mrow><mtext>Na</mtext></mrow><mrow><mn>0.475</mn></mrow></msub><msub><mrow><mtext>Li</mtext></mrow><mrow><mn>0.05</mn></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mtext>Nb</mtext></mrow><mrow><mn>0.92</mn></mrow></msub><msub><mrow><mtext>Ta</mtext></mrow><mrow><mn>0.05</mn></mrow></msub><msub><mrow><mtext>Sb</mtext></mrow><mrow><mn>0.03</mn></mrow></msub><mo>)</mo><msub><mrow><mtext>O</mtext></mrow><mrow><mn>3</mn></mrow></msub></math></span>, doped with <span><math><mn>0.4</mn><mspace></mspace><mtext>wt%</mtext><mspace></mspace><msub><mrow><mtext>CeO</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mn>0.4</mn><mspace></mspace><mtext>wt%</mtext><mspace></mspace><msub><mrow><mtext>MnO</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The second material system has Epoxy-BNKLBT and Epoxy-PZT7A, where PZT7A denotes Lead Zirconate Titanate. The viscoelastic materials are modeled to reflect their complex behavior under rotational and stress conditions. The Galilean transformation is applied to convert the Cartesian coordinate system into a moving reference frame aligned with the Love wave's propagation. Employing Bessel function properties, the system is converted into a set of double integral equations and subsequently reformulated into simultaneous Fredholm integral equations. Numerical solutions to these Fredholm integral equations are employed to compute the electric displacement intensity factor and the stress intensity factor near the interfacial crack. These factors are also used to derive the expression for the energy density factor, thereby demonstrating the intrinsic coupling between the stress intensity factor and the electric displacement intensity factor. The key objective of this study is to visualize the impact of different material parameters, including piezoelectric constants, dielectric constants, initial stress, electric displacement at the interface, as well as interface stress and rotation on the stress intensity, electric displacement intensity, and energy density factors. The investigations of this study will be helpful for advanced technologies like surface acoustic wave sensors and piezoelectric actuators, as well as to enhance surface acoustic wave bio-sensor sensitivity and stability for early cancer detection and biomedical implants.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"186 ","pages":"Pages 130-154"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001178","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs an integral transform approach for Love wave propagation in a rotating composite structure having an interfacial crack. The structure comprises an initially stressed functionally graded piezoelectric-viscoelastic half-space bonded to a piezoelectric-viscoelastic half-space, and is subjected to anti-plane mechanical loading and in-plane electrical loading. The study focuses on two material systems: the first material system consists of Epoxy-BNKLBT and Epoxy-KNLNTS, where BNKLBT stands for 0.885(Bi0.5Na0.5)TiO30.05(Bi0.5K0.5)TiO30.015(Bi0.5Li0.5)TiO30.05BaTiO3, and KNLNTS represents (K0.475Na0.475Li0.05)(Nb0.92Ta0.05Sb0.03)O3, doped with 0.4wt%CeO2 and 0.4wt%MnO2. The second material system has Epoxy-BNKLBT and Epoxy-PZT7A, where PZT7A denotes Lead Zirconate Titanate. The viscoelastic materials are modeled to reflect their complex behavior under rotational and stress conditions. The Galilean transformation is applied to convert the Cartesian coordinate system into a moving reference frame aligned with the Love wave's propagation. Employing Bessel function properties, the system is converted into a set of double integral equations and subsequently reformulated into simultaneous Fredholm integral equations. Numerical solutions to these Fredholm integral equations are employed to compute the electric displacement intensity factor and the stress intensity factor near the interfacial crack. These factors are also used to derive the expression for the energy density factor, thereby demonstrating the intrinsic coupling between the stress intensity factor and the electric displacement intensity factor. The key objective of this study is to visualize the impact of different material parameters, including piezoelectric constants, dielectric constants, initial stress, electric displacement at the interface, as well as interface stress and rotation on the stress intensity, electric displacement intensity, and energy density factors. The investigations of this study will be helpful for advanced technologies like surface acoustic wave sensors and piezoelectric actuators, as well as to enhance surface acoustic wave bio-sensor sensitivity and stability for early cancer detection and biomedical implants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信