Concetta Ruocco, Eugenio Meloni, Olga Muccioli, Vincenzo Palma
{"title":"Intensified methanol steam reforming over active and stable CeO2-Al2O3 supported catalysts","authors":"Concetta Ruocco, Eugenio Meloni, Olga Muccioli, Vincenzo Palma","doi":"10.1016/j.fuproc.2025.108212","DOIUrl":null,"url":null,"abstract":"<div><div>The recent limitations imposed by the maritime rule-making units have goaded the researcher's interest towards methanol applications as near-zero emission fuel. Methanol can be either directly fed to internal combustion engineering or sent to a pre-reforming unit for hydrogen generation and further conversion in fuel cells devices. In this scenario, the optimization of the reforming unit is crucial to achieve high hydrogen yields.</div><div>This study investigates the activity, selectivity and stability of different CeO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> supported catalysts for methanol steam reforming. Moreover, the kinetic parameters of the best performing catalyst were determined. Several mono-, bi- and trimetallic catalysts were prepared by the wet impregnation method (Ni, Cu, Ni<img>Cu, Cu<img>Ni, Zn-Ni-Cu, Pt<img>Ni, Pd<img>Ni, Pt<img>Zn, Pd<img>Zn, Pd<img>Cu) and were preliminarily screened between 200 and 600 °C under a S/C ratio of 1.5 and WHSV = 2 h<sup>−1</sup>. Looking at methanol conversion and products selectivity, the lowest CO formation was recorded over the Cu-based catalysts: the addition of 2 wt% of palladium considerably improved both CH<sub>3</sub>OH conversion and hydrogen yield. The Pd<img>Cu formulation, rarely investigated in the recent literature, appeared very promising and was also subjected to 40 h of time-on-stream test at 300 °C, observing only a 5 % reduction in terms of both conversion and H<sub>2</sub> yield, which were attested to 95 and 88 %, respectively, at the end of the test. Moreover, a very low coke selectivity (1.5 wt%) was recorded, with relevant deactivation resistance. Finally, based on a simplified power-law kinetic model, the activation energies for methanol steam reforming (22 kJ·mol<sup>−1</sup>), methanol decomposition (71 kJ·mol<sup>−1</sup>) and water gas shift reaction (84 kJ·mol<sup>−1</sup>) were also developed, which further demonstrated the high activity of the developed catalyst towards MSR.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"272 ","pages":"Article 108212"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025000360","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The recent limitations imposed by the maritime rule-making units have goaded the researcher's interest towards methanol applications as near-zero emission fuel. Methanol can be either directly fed to internal combustion engineering or sent to a pre-reforming unit for hydrogen generation and further conversion in fuel cells devices. In this scenario, the optimization of the reforming unit is crucial to achieve high hydrogen yields.
This study investigates the activity, selectivity and stability of different CeO2-Al2O3 supported catalysts for methanol steam reforming. Moreover, the kinetic parameters of the best performing catalyst were determined. Several mono-, bi- and trimetallic catalysts were prepared by the wet impregnation method (Ni, Cu, NiCu, CuNi, Zn-Ni-Cu, PtNi, PdNi, PtZn, PdZn, PdCu) and were preliminarily screened between 200 and 600 °C under a S/C ratio of 1.5 and WHSV = 2 h−1. Looking at methanol conversion and products selectivity, the lowest CO formation was recorded over the Cu-based catalysts: the addition of 2 wt% of palladium considerably improved both CH3OH conversion and hydrogen yield. The PdCu formulation, rarely investigated in the recent literature, appeared very promising and was also subjected to 40 h of time-on-stream test at 300 °C, observing only a 5 % reduction in terms of both conversion and H2 yield, which were attested to 95 and 88 %, respectively, at the end of the test. Moreover, a very low coke selectivity (1.5 wt%) was recorded, with relevant deactivation resistance. Finally, based on a simplified power-law kinetic model, the activation energies for methanol steam reforming (22 kJ·mol−1), methanol decomposition (71 kJ·mol−1) and water gas shift reaction (84 kJ·mol−1) were also developed, which further demonstrated the high activity of the developed catalyst towards MSR.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.