Ahmed Sayed , Khaled Al Jaafari , Xian Zhang , Hatem Zeineldin , Ahmed Al-Durra , Guibin Wang , Ehab Elsaadany
{"title":"Efficient optimal power flow learning: A deep reinforcement learning with physics-driven critic model","authors":"Ahmed Sayed , Khaled Al Jaafari , Xian Zhang , Hatem Zeineldin , Ahmed Al-Durra , Guibin Wang , Ehab Elsaadany","doi":"10.1016/j.ijepes.2025.110621","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to decarbonized energy systems presents significant operational challenges due to increased uncertainties and complex dynamics. Deep reinforcement learning (DRL) has emerged as a powerful tool for optimizing power system operations. However, most existing DRL approaches rely on approximated data-driven critic networks, requiring numerous risky interactions to explore the environment and often facing estimation errors. To address these limitations, this paper proposes an efficient DRL algorithm with a physics-driven critic model, namely a differentiable holomorphic embedding load flow model (D-HELM). This approach enables accurate policy gradient computation through a differentiable loss function based on system states of realized uncertainties, simplifying both the replay buffer and the learning process. By leveraging continuation power flow principles, D-HELM ensures operable, feasible solutions while accelerating gradient steps through simple matrix operations. Simulation results across various test systems demonstrate the computational superiority of the proposed approach, outperforming state-of-the-art DRL algorithms during training and model-based solvers in online operations. This work represents a potential breakthrough in real-time energy system operations, with extensions to security-constrained decision-making, voltage control, unit commitment, and multi-energy systems.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110621"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001723","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The transition to decarbonized energy systems presents significant operational challenges due to increased uncertainties and complex dynamics. Deep reinforcement learning (DRL) has emerged as a powerful tool for optimizing power system operations. However, most existing DRL approaches rely on approximated data-driven critic networks, requiring numerous risky interactions to explore the environment and often facing estimation errors. To address these limitations, this paper proposes an efficient DRL algorithm with a physics-driven critic model, namely a differentiable holomorphic embedding load flow model (D-HELM). This approach enables accurate policy gradient computation through a differentiable loss function based on system states of realized uncertainties, simplifying both the replay buffer and the learning process. By leveraging continuation power flow principles, D-HELM ensures operable, feasible solutions while accelerating gradient steps through simple matrix operations. Simulation results across various test systems demonstrate the computational superiority of the proposed approach, outperforming state-of-the-art DRL algorithms during training and model-based solvers in online operations. This work represents a potential breakthrough in real-time energy system operations, with extensions to security-constrained decision-making, voltage control, unit commitment, and multi-energy systems.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.