Efficient optimal power flow learning: A deep reinforcement learning with physics-driven critic model

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmed Sayed , Khaled Al Jaafari , Xian Zhang , Hatem Zeineldin , Ahmed Al-Durra , Guibin Wang , Ehab Elsaadany
{"title":"Efficient optimal power flow learning: A deep reinforcement learning with physics-driven critic model","authors":"Ahmed Sayed ,&nbsp;Khaled Al Jaafari ,&nbsp;Xian Zhang ,&nbsp;Hatem Zeineldin ,&nbsp;Ahmed Al-Durra ,&nbsp;Guibin Wang ,&nbsp;Ehab Elsaadany","doi":"10.1016/j.ijepes.2025.110621","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to decarbonized energy systems presents significant operational challenges due to increased uncertainties and complex dynamics. Deep reinforcement learning (DRL) has emerged as a powerful tool for optimizing power system operations. However, most existing DRL approaches rely on approximated data-driven critic networks, requiring numerous risky interactions to explore the environment and often facing estimation errors. To address these limitations, this paper proposes an efficient DRL algorithm with a physics-driven critic model, namely a differentiable holomorphic embedding load flow model (D-HELM). This approach enables accurate policy gradient computation through a differentiable loss function based on system states of realized uncertainties, simplifying both the replay buffer and the learning process. By leveraging continuation power flow principles, D-HELM ensures operable, feasible solutions while accelerating gradient steps through simple matrix operations. Simulation results across various test systems demonstrate the computational superiority of the proposed approach, outperforming state-of-the-art DRL algorithms during training and model-based solvers in online operations. This work represents a potential breakthrough in real-time energy system operations, with extensions to security-constrained decision-making, voltage control, unit commitment, and multi-energy systems.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110621"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001723","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The transition to decarbonized energy systems presents significant operational challenges due to increased uncertainties and complex dynamics. Deep reinforcement learning (DRL) has emerged as a powerful tool for optimizing power system operations. However, most existing DRL approaches rely on approximated data-driven critic networks, requiring numerous risky interactions to explore the environment and often facing estimation errors. To address these limitations, this paper proposes an efficient DRL algorithm with a physics-driven critic model, namely a differentiable holomorphic embedding load flow model (D-HELM). This approach enables accurate policy gradient computation through a differentiable loss function based on system states of realized uncertainties, simplifying both the replay buffer and the learning process. By leveraging continuation power flow principles, D-HELM ensures operable, feasible solutions while accelerating gradient steps through simple matrix operations. Simulation results across various test systems demonstrate the computational superiority of the proposed approach, outperforming state-of-the-art DRL algorithms during training and model-based solvers in online operations. This work represents a potential breakthrough in real-time energy system operations, with extensions to security-constrained decision-making, voltage control, unit commitment, and multi-energy systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信