Sangita Paul , Remya Chandran , Dileep K. Vijayan , Juhi Bhardwaj , Praveen Singh , Poornima Shetty , Srinivas Cheruku , Sajith Meleveetil , Binukumar Balachandran Krishnamma
{"title":"A Cdk5 inhibitor restores cognitive function and alleviates type 2 diabetes in mice","authors":"Sangita Paul , Remya Chandran , Dileep K. Vijayan , Juhi Bhardwaj , Praveen Singh , Poornima Shetty , Srinivas Cheruku , Sajith Meleveetil , Binukumar Balachandran Krishnamma","doi":"10.1016/j.isci.2025.112200","DOIUrl":null,"url":null,"abstract":"<div><div>Type 2 diabetes (T2D) is a metabolic disorder commonly linked with cognitive decline, increasing patients’ susceptibility to dementia. Alzheimer’s disease (AD) has a strong connection with hyperglycemia and insulin dysregulation. Interestingly, certain anti-diabetic drugs have shown potential in reducing T2D-induced cognitive impairment. Previous studies, including ours, have highlighted the dysregulation of cyclin-dependent kinase 5 (Cdk5) activity in both T2D and AD, which may contribute to pathological changes in these conditions. Thus, targeting the Cdk5 kinase could offer a therapeutic approach for T2D and cognitive deterioration. Our research identifies Cdk5 as a key link between T2D and cognitive decline. By screening the KINACore library, we discovered two new brain-penetrant Cdk5 inhibitors, BLINK11 and BLINK15. In a high-fat diet-induced T2D model, these inhibitors improved blood glucose levels, obesity, and cognitive function. BLINK11, in particular, shows promise as a therapeutic candidate for treating cognitive impairment associated with T2D.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 4","pages":"Article 112200"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225004614","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes (T2D) is a metabolic disorder commonly linked with cognitive decline, increasing patients’ susceptibility to dementia. Alzheimer’s disease (AD) has a strong connection with hyperglycemia and insulin dysregulation. Interestingly, certain anti-diabetic drugs have shown potential in reducing T2D-induced cognitive impairment. Previous studies, including ours, have highlighted the dysregulation of cyclin-dependent kinase 5 (Cdk5) activity in both T2D and AD, which may contribute to pathological changes in these conditions. Thus, targeting the Cdk5 kinase could offer a therapeutic approach for T2D and cognitive deterioration. Our research identifies Cdk5 as a key link between T2D and cognitive decline. By screening the KINACore library, we discovered two new brain-penetrant Cdk5 inhibitors, BLINK11 and BLINK15. In a high-fat diet-induced T2D model, these inhibitors improved blood glucose levels, obesity, and cognitive function. BLINK11, in particular, shows promise as a therapeutic candidate for treating cognitive impairment associated with T2D.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.