Maximal and maximum induced matchings in connected graphs

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Bo-Jun Yuan , Zhao-Yu Yang, Lu Zheng, Shi-Cai Gong
{"title":"Maximal and maximum induced matchings in connected graphs","authors":"Bo-Jun Yuan ,&nbsp;Zhao-Yu Yang,&nbsp;Lu Zheng,&nbsp;Shi-Cai Gong","doi":"10.1016/j.amc.2025.129432","DOIUrl":null,"url":null,"abstract":"<div><div>An induced matching is defined as a set of edges whose end-vertices induce a subgraph that is 1-regular. Building upon the work of Gupta et al. (2012) <span><span>[11]</span></span> and Basavaraju et al. (2016) <span><span>[1]</span></span>, who determined the maximum number of maximal induced matchings in general and triangle-free graphs respectively, this paper extends their findings to connected graphs with <em>n</em> vertices. We establish a tight upper bound on the number of maximal and maximum induced matchings, as detailed below:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>8</mn><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>⋅</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mo>(</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><mo>(</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>9</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>13</mn><mo>;</mo></mtd></mtr><mtr><mtd><msup><mrow><mn>10</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>144</mn></mrow><mrow><mn>30</mn></mrow></mfrac><mo>⋅</mo><msup><mrow><mn>6</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mn>14</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>30</mn><mo>;</mo></mtd></mtr><mtr><mtd><msup><mrow><mn>10</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><msup><mrow><mn>6</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup></mtd><mtd><mspace></mspace><mrow><mi>if</mi></mrow><mspace></mspace><mi>n</mi><mo>≥</mo><mn>31</mn><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> This result not only provides a theoretical upper bound but also implies a practical algorithmic application: enumerating all maximal induced matchings of an <em>n</em>-vertex connected graph in time <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>1.5849</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. Additionally, our work offers an estimate for the number of maximal dissociation sets in connected graphs with <em>n</em> vertices.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129432"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001596","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An induced matching is defined as a set of edges whose end-vertices induce a subgraph that is 1-regular. Building upon the work of Gupta et al. (2012) [11] and Basavaraju et al. (2016) [1], who determined the maximum number of maximal induced matchings in general and triangle-free graphs respectively, this paper extends their findings to connected graphs with n vertices. We establish a tight upper bound on the number of maximal and maximum induced matchings, as detailed below:{(n2)if1n8;(n22)(n22)(n21)(n21)+1if9n13;10n15+n+144306n65if14n30;10n15+n156n65ifn31. This result not only provides a theoretical upper bound but also implies a practical algorithmic application: enumerating all maximal induced matchings of an n-vertex connected graph in time O(1.5849n). Additionally, our work offers an estimate for the number of maximal dissociation sets in connected graphs with n vertices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信