Upscaling transformation plasticity using full field fast Fourier transform simulations of polycrystals undergoing phase transformations under applied loads
{"title":"Upscaling transformation plasticity using full field fast Fourier transform simulations of polycrystals undergoing phase transformations under applied loads","authors":"Shahul Hameed Nambiyankulam Hussain , Daniel Weisz-Patrault , Benoit Appolaire , Sabine Denis , Amico Settefrati","doi":"10.1016/j.ijsolstr.2025.113337","DOIUrl":null,"url":null,"abstract":"<div><div>Transformation plasticity has been intensively studied because of its significant impact on various industrial fabrication and forming processes. The widely used analytical macroscopic models are based on idealized microstructures and strong assumptions. Such models predict linear (or weakly non-linear) dependence between the transformation plastic strain rate and the applied load, whereas experimental evidence shows that this dependence becomes highly non-linear when the applied stress becomes non-negligible with respect to the macroscopic yield stress. Such a non-linear response is not fully understood especially for phase transformations arising at high temperatures for which the product phase is often softer than the parent phase, and involving visco-plastic behavior.</div><div>Therefore to overcome this difficulty, the first key contribution of this paper is to exhibit the detailed mechanisms leading to transformation plasticity in steels undergoing austenite to ferrite phase transformation at high temperature and to explain the non-linear dependence between the transformation plastic strain and the applied load. To do so, full-field simulations of visco-plastic polycrystalline aggregates undergoing phase transformations under applied load are performed. In addition, the second key contribution consists in upscaling the outcomes obtained at the scale of the polycrystal into a macroscopic statistical model, that can be used for large simulations of industrial processes. To do so, a database of computations with various initial microstructures, grain shape distributions, and applied loads have been performed, and used to derive the macroscopic statistical model. Of course, to create such a database, a relatively short computation time should be obtained for the full-field simulations, which is achieved by using a fast Fourier transform-based algorithm.</div><div>Numerical results showed that the combination of two different mechanisms may explain the non-linear behavior of transformation plasticity with respect to the applied load. Moreover, the upscaled statistical model has been tested on full field simulations not included in the database and a good agreement was observed.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"315 ","pages":"Article 113337"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325001234","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Transformation plasticity has been intensively studied because of its significant impact on various industrial fabrication and forming processes. The widely used analytical macroscopic models are based on idealized microstructures and strong assumptions. Such models predict linear (or weakly non-linear) dependence between the transformation plastic strain rate and the applied load, whereas experimental evidence shows that this dependence becomes highly non-linear when the applied stress becomes non-negligible with respect to the macroscopic yield stress. Such a non-linear response is not fully understood especially for phase transformations arising at high temperatures for which the product phase is often softer than the parent phase, and involving visco-plastic behavior.
Therefore to overcome this difficulty, the first key contribution of this paper is to exhibit the detailed mechanisms leading to transformation plasticity in steels undergoing austenite to ferrite phase transformation at high temperature and to explain the non-linear dependence between the transformation plastic strain and the applied load. To do so, full-field simulations of visco-plastic polycrystalline aggregates undergoing phase transformations under applied load are performed. In addition, the second key contribution consists in upscaling the outcomes obtained at the scale of the polycrystal into a macroscopic statistical model, that can be used for large simulations of industrial processes. To do so, a database of computations with various initial microstructures, grain shape distributions, and applied loads have been performed, and used to derive the macroscopic statistical model. Of course, to create such a database, a relatively short computation time should be obtained for the full-field simulations, which is achieved by using a fast Fourier transform-based algorithm.
Numerical results showed that the combination of two different mechanisms may explain the non-linear behavior of transformation plasticity with respect to the applied load. Moreover, the upscaled statistical model has been tested on full field simulations not included in the database and a good agreement was observed.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.