A comprehensive understanding on droplets

IF 19.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Gang Chen, Guanhua Lin
{"title":"A comprehensive understanding on droplets","authors":"Gang Chen,&nbsp;Guanhua Lin","doi":"10.1016/j.cis.2025.103490","DOIUrl":null,"url":null,"abstract":"<div><div>Droplets are ubiquitous and necessary in natural phenomena, daily life, and industrial processes, which play a crucial role in many fields. So, the manipulation of droplets has been extensively investigated for meeting widespread applications, consequently, a great deal of progresses have been achieved across multiple disciplines ranging from chemistry to physics, material, biological, and energy science. For example, microdroplets have been utilized as reactors, colorimetric or electrochemical sensors, drug-delivery carriers, and energy harvesters. Moreover, droplet manipulation is the basis in both fundamental researches and practical applications, especially the combination of smart materials and external fields for achieving multifunctional applications of droplets. In view of this background, this review initiates discussion of the manipulation strategies of droplets including Laplace pressure, wettability gradients, electric field, magnetic force, light and temperature. Thereafter, based on their manipulation strategies, this review mainly summarizes the applications of droplets in the fields of robot, green energy, sensors, biomedical treatments, microreactors and chemical reactions. Application related basic concepts, theories, principles and progresses also have been introduced. Finally, this review addresses the challenges of manipulation and applications of droplets and provides the potential directions for their future development. By presenting these results, we aim to provide a comprehensive overview of water droplets and establish a unified framework that guides the development of droplets in various fields.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"341 ","pages":"Article 103490"},"PeriodicalIF":19.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Droplets are ubiquitous and necessary in natural phenomena, daily life, and industrial processes, which play a crucial role in many fields. So, the manipulation of droplets has been extensively investigated for meeting widespread applications, consequently, a great deal of progresses have been achieved across multiple disciplines ranging from chemistry to physics, material, biological, and energy science. For example, microdroplets have been utilized as reactors, colorimetric or electrochemical sensors, drug-delivery carriers, and energy harvesters. Moreover, droplet manipulation is the basis in both fundamental researches and practical applications, especially the combination of smart materials and external fields for achieving multifunctional applications of droplets. In view of this background, this review initiates discussion of the manipulation strategies of droplets including Laplace pressure, wettability gradients, electric field, magnetic force, light and temperature. Thereafter, based on their manipulation strategies, this review mainly summarizes the applications of droplets in the fields of robot, green energy, sensors, biomedical treatments, microreactors and chemical reactions. Application related basic concepts, theories, principles and progresses also have been introduced. Finally, this review addresses the challenges of manipulation and applications of droplets and provides the potential directions for their future development. By presenting these results, we aim to provide a comprehensive overview of water droplets and establish a unified framework that guides the development of droplets in various fields.

Abstract Image

对液滴的全面认识
液滴在自然现象、日常生活和工业过程中无处不在,在许多领域发挥着至关重要的作用。因此,为了满足广泛的应用,液滴的操纵已经得到了广泛的研究,因此,从化学到物理、材料、生物和能源科学等多个学科取得了很大的进展。例如,微滴已被用作反应器、比色或电化学传感器、药物输送载体和能量收集器。此外,液滴操控是基础研究和实际应用的基础,尤其是将智能材料与外部场相结合,实现液滴的多功能应用。在此背景下,本文从拉氏压力、润湿性梯度、电场、磁力、光和温度等方面对液滴的控制策略进行了讨论。然后,根据液滴的操作策略,综述了液滴在机器人、绿色能源、传感器、生物医学治疗、微反应器和化学反应等领域的应用。介绍了相关应用的基本概念、理论、原理和进展。最后,本文对液滴的操作和应用面临的挑战进行了综述,并提出了液滴未来发展的潜在方向。通过这些结果,我们旨在提供一个全面的水滴概述,并建立一个统一的框架,指导水滴在各个领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信