Measuring technology acceptance over time using transfer models based on online customer reviews

IF 11 1区 管理学 Q1 BUSINESS
Daniel Baier, Andreas Karasenko, Alexandra Rese
{"title":"Measuring technology acceptance over time using transfer models based on online customer reviews","authors":"Daniel Baier,&nbsp;Andreas Karasenko,&nbsp;Alexandra Rese","doi":"10.1016/j.jretconser.2025.104278","DOIUrl":null,"url":null,"abstract":"<div><div>Online customer reviews (OCRs) are user-generated, semi-formal evaluations of products, services, or technologies. They usually consist of a timestamp, a star rating, and, in many cases, a comment that reflects perceived strengths and weaknesses. OCRs are easily accessible in large numbers on the Internet – for example, through app stores, electronic marketplaces, online shops, and review websites. This paper presents new transfer models to predict technology acceptance and its determinants from OCRs. We train, test, and validate these prediction models using large OCR samples and corresponding observed construct ratings by human experts and generative artificial intelligence chatbots as well as estimated ratings from a traditional customer survey. From a management perspective, the new approach enhances former technology acceptance measurement since we use OCRs as a basis for prediction and discuss the evolution of acceptance over time.</div></div>","PeriodicalId":48399,"journal":{"name":"Journal of Retailing and Consumer Services","volume":"85 ","pages":"Article 104278"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Retailing and Consumer Services","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969698925000578","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Online customer reviews (OCRs) are user-generated, semi-formal evaluations of products, services, or technologies. They usually consist of a timestamp, a star rating, and, in many cases, a comment that reflects perceived strengths and weaknesses. OCRs are easily accessible in large numbers on the Internet – for example, through app stores, electronic marketplaces, online shops, and review websites. This paper presents new transfer models to predict technology acceptance and its determinants from OCRs. We train, test, and validate these prediction models using large OCR samples and corresponding observed construct ratings by human experts and generative artificial intelligence chatbots as well as estimated ratings from a traditional customer survey. From a management perspective, the new approach enhances former technology acceptance measurement since we use OCRs as a basis for prediction and discuss the evolution of acceptance over time.
在线客户评论(OCR)是由用户生成的对产品、服务或技术的半正式评价。它们通常包括一个时间戳、一个星级评价,在许多情况下还包括反映所认为的优缺点的评论。在互联网上,例如通过应用程序商店、电子市场、网上商店和评论网站,可以很容易地获取大量 OCR。本文介绍了从 OCR 中预测技术接受度及其决定因素的新转移模型。我们使用大量 OCR 样本、人类专家和生成式人工智能聊天机器人观察到的相应构造评分以及传统客户调查中的估计评分来训练、测试和验证这些预测模型。从管理角度来看,新方法增强了以前的技术接受度测量,因为我们使用 OCR 作为预测基础,并讨论了接受度随时间的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
20.40
自引率
14.40%
发文量
340
审稿时长
20 days
期刊介绍: The Journal of Retailing and Consumer Services is a prominent publication that serves as a platform for international and interdisciplinary research and discussions in the constantly evolving fields of retailing and services studies. With a specific emphasis on consumer behavior and policy and managerial decisions, the journal aims to foster contributions from academics encompassing diverse disciplines. The primary areas covered by the journal are: Retailing and the sale of goods The provision of consumer services, including transportation, tourism, and leisure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信