{"title":"Measuring technology acceptance over time using transfer models based on online customer reviews","authors":"Daniel Baier, Andreas Karasenko, Alexandra Rese","doi":"10.1016/j.jretconser.2025.104278","DOIUrl":null,"url":null,"abstract":"<div><div>Online customer reviews (OCRs) are user-generated, semi-formal evaluations of products, services, or technologies. They usually consist of a timestamp, a star rating, and, in many cases, a comment that reflects perceived strengths and weaknesses. OCRs are easily accessible in large numbers on the Internet – for example, through app stores, electronic marketplaces, online shops, and review websites. This paper presents new transfer models to predict technology acceptance and its determinants from OCRs. We train, test, and validate these prediction models using large OCR samples and corresponding observed construct ratings by human experts and generative artificial intelligence chatbots as well as estimated ratings from a traditional customer survey. From a management perspective, the new approach enhances former technology acceptance measurement since we use OCRs as a basis for prediction and discuss the evolution of acceptance over time.</div></div>","PeriodicalId":48399,"journal":{"name":"Journal of Retailing and Consumer Services","volume":"85 ","pages":"Article 104278"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Retailing and Consumer Services","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969698925000578","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
Online customer reviews (OCRs) are user-generated, semi-formal evaluations of products, services, or technologies. They usually consist of a timestamp, a star rating, and, in many cases, a comment that reflects perceived strengths and weaknesses. OCRs are easily accessible in large numbers on the Internet – for example, through app stores, electronic marketplaces, online shops, and review websites. This paper presents new transfer models to predict technology acceptance and its determinants from OCRs. We train, test, and validate these prediction models using large OCR samples and corresponding observed construct ratings by human experts and generative artificial intelligence chatbots as well as estimated ratings from a traditional customer survey. From a management perspective, the new approach enhances former technology acceptance measurement since we use OCRs as a basis for prediction and discuss the evolution of acceptance over time.
期刊介绍:
The Journal of Retailing and Consumer Services is a prominent publication that serves as a platform for international and interdisciplinary research and discussions in the constantly evolving fields of retailing and services studies. With a specific emphasis on consumer behavior and policy and managerial decisions, the journal aims to foster contributions from academics encompassing diverse disciplines. The primary areas covered by the journal are:
Retailing and the sale of goods
The provision of consumer services, including transportation, tourism, and leisure.