On logarithmic double phase problems

IF 2.4 2区 数学 Q1 MATHEMATICS
Rakesh Arora , Ángel Crespo-Blanco , Patrick Winkert
{"title":"On logarithmic double phase problems","authors":"Rakesh Arora ,&nbsp;Ángel Crespo-Blanco ,&nbsp;Patrick Winkert","doi":"10.1016/j.jde.2025.113247","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we introduce a new logarithmic double phase type operator of the form<span><span><span><math><mrow><mtable><mtr><mtd><mi>G</mi><mi>u</mi></mtd><mtd><mo>:</mo><mo>=</mo><mo>−</mo><mi>div</mi><mo>(</mo><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mo>[</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mo>+</mo><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mo>)</mo><mo>+</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>(</mo><mi>e</mi><mo>+</mo><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> whose energy functional is given by<span><span><span><math><mrow><mi>u</mi><mo>↦</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mfrac><mrow><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfrac><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mo>+</mo><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mo>)</mo><mo>)</mo></mrow><mrow><mi>d</mi><mtext>x</mtext></mrow><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> with <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> for all <span><math><mi>x</mi><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. First, we prove that the logarithmic Musielak-Orlicz Sobolev spaces <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> with <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mo>+</mo><mi>t</mi><mo>)</mo></math></span> for <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> are separable, reflexive Banach spaces and <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> can be equipped with the equivalent norm<span><span><span><math><mi>inf</mi><mo>⁡</mo><mrow><mo>{</mo><mi>λ</mi><mo>&gt;</mo><mn>0</mn><mo>:</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>[</mo><msup><mrow><mo>|</mo><mfrac><mrow><mi>∇</mi><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo><mfrac><mrow><mi>∇</mi><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mi>log</mi><mo>⁡</mo><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>)</mo></mrow><mo>]</mo></mrow><mrow><mi>d</mi><mtext>x</mtext></mrow><mo>≤</mo><mn>1</mn><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We also prove several embedding results for these spaces and the closedness of <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> under truncations. In addition we show the density of smooth functions in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> even in the case of an unbounded domain by supposing Nekvinda's decay condition on <span><math><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>. The second part is devoted to the properties of the operator and it turns out that it is bounded, continuous, strictly monotone, of type (S<sub>+</sub>), coercive and a homeomorphism. Also, the related energy functional is of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>. As a result of independent interest we also present a new version of Young's inequality for the product of a power-law and a logarithm. In the last part of this work we consider equations of the form<span><span><span><math><mi>G</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi></math></span></span></span> with superlinear right-hand sides. We prove multiplicity results for this type of equation, in particular about sign-changing solutions, by making use of a suitable variation of the corresponding Nehari manifold together with the quantitative deformation lemma and the Poincaré-Miranda existence theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"433 ","pages":"Article 113247"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002621","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce a new logarithmic double phase type operator of the formGu:=div(|u|p(x)2u+μ(x)[log(e+|u|)+|u|q(x)(e+|u|)]|u|q(x)2u), whose energy functional is given byuΩ(|u|p(x)p(x)+μ(x)|u|q(x)q(x)log(e+|u|))dx, where ΩRN, N2, is a bounded domain with Lipschitz boundary ∂Ω, p,qC(Ω) with 1<p(x)q(x) for all xΩ and 0μ()L1(Ω). First, we prove that the logarithmic Musielak-Orlicz Sobolev spaces W1,Hlog(Ω) and W01,Hlog(Ω) with Hlog(x,t)=tp(x)+μ(x)tq(x)log(e+t) for (x,t)Ω×[0,) are separable, reflexive Banach spaces and W01,Hlog(Ω) can be equipped with the equivalent norminf{λ>0:Ω[|uλ|p(x)+μ(x)|uλ|q(x)log(e+|u|λ)]dx1}. We also prove several embedding results for these spaces and the closedness of W1,Hlog(Ω) and W01,Hlog(Ω) under truncations. In addition we show the density of smooth functions in W1,Hlog(Ω) even in the case of an unbounded domain by supposing Nekvinda's decay condition on p(). The second part is devoted to the properties of the operator and it turns out that it is bounded, continuous, strictly monotone, of type (S+), coercive and a homeomorphism. Also, the related energy functional is of class C1. As a result of independent interest we also present a new version of Young's inequality for the product of a power-law and a logarithm. In the last part of this work we consider equations of the formGu=f(x,u)in Ω,u=0on Ω with superlinear right-hand sides. We prove multiplicity results for this type of equation, in particular about sign-changing solutions, by making use of a suitable variation of the corresponding Nehari manifold together with the quantitative deformation lemma and the Poincaré-Miranda existence theorem.
关于对数双相问题
本文引入了一种新的对数双相型算子,其形式为gu:=−div(|∇u|p(x)−2∇u+μ(x)[log (e+|∇u|)+|∇u|q(x)(e+|∇u|)]|∇u|q(x)−2∇u |q(x)),其能量泛函数为byu∈∫Ω(|∇u|p(x)p(x)+μ(x))|∇u|q(x)q(x)log (e+|∇u|))dx,其中Ω RN, N≥2是一个具有Lipschitz边界∂Ω, p,q∈C(Ω)的有界域,对于所有x∈Ω和0≤μ(⋅)∈L1(Ω), p(x)≤q(x)。首先,证明了对数Musielak-Orlicz Sobolev空间W1,Hlog(Ω)和W01,Hlog(Ω)对(x,t)∈Ω, x[0,∞]具有Hlog(x,t)=tp(x)+μ(x)tq(x)log (e+t)是可分的,自反Banach空间和W01,Hlog(Ω)可以配以等价的norminf (λ>0:∫Ω[|∇λ|p(x)+μ(x)|∇λ|q(x)log (e+|∇u|λ)]dx≤1}。我们还证明了这些空间的若干嵌入结果以及截断下W1,Hlog(Ω)和W01,Hlog(Ω)的紧密性。此外,我们还通过假设Nekvinda在p(⋅)上的衰减条件,给出了在无界域上W1,Hlog(Ω)中光滑函数的密度。第二部分讨论了算子的性质,证明了算子是有界的、连续的、严格单调的、(S+)型的、强制的和同胚的。相关的能量泛函为C1类。由于独立的兴趣,我们还提出了幂律和对数乘积的杨氏不等式的一个新版本。在本工作的最后一部分中,我们考虑具有超线性右侧的形式为gu =f(x,u) In Ω,u=0on∂Ω的方程。我们利用相应的Nehari流形的适当变分,结合定量变形引理和poincarr - miranda存在性定理,证明了这类方程的多重性结果,特别是关于变号解的多重性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信