Rakesh Arora , Ángel Crespo-Blanco , Patrick Winkert
{"title":"On logarithmic double phase problems","authors":"Rakesh Arora , Ángel Crespo-Blanco , Patrick Winkert","doi":"10.1016/j.jde.2025.113247","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we introduce a new logarithmic double phase type operator of the form<span><span><span><math><mrow><mtable><mtr><mtd><mi>G</mi><mi>u</mi></mtd><mtd><mo>:</mo><mo>=</mo><mo>−</mo><mi>div</mi><mo>(</mo><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mo>[</mo><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mo>+</mo><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mo>)</mo><mo>+</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>(</mo><mi>e</mi><mo>+</mo><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mo>)</mo></mrow></mfrac><mo>]</mo></mrow><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> whose energy functional is given by<span><span><span><math><mrow><mi>u</mi><mo>↦</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mfrac><mrow><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfrac><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mo>+</mo><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mo>)</mo><mo>)</mo></mrow><mrow><mi>d</mi><mtext>x</mtext></mrow><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> with <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> for all <span><math><mi>x</mi><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>. First, we prove that the logarithmic Musielak-Orlicz Sobolev spaces <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> with <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mi>log</mi><mo></mo><mo>(</mo><mi>e</mi><mo>+</mo><mi>t</mi><mo>)</mo></math></span> for <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> are separable, reflexive Banach spaces and <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> can be equipped with the equivalent norm<span><span><span><math><mi>inf</mi><mo></mo><mrow><mo>{</mo><mi>λ</mi><mo>></mo><mn>0</mn><mo>:</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>[</mo><msup><mrow><mo>|</mo><mfrac><mrow><mi>∇</mi><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo><mfrac><mrow><mi>∇</mi><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>|</mo></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mi>log</mi><mo></mo><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>)</mo></mrow><mo>]</mo></mrow><mrow><mi>d</mi><mtext>x</mtext></mrow><mo>≤</mo><mn>1</mn><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We also prove several embedding results for these spaces and the closedness of <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> under truncations. In addition we show the density of smooth functions in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>log</mi></mrow></msub></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> even in the case of an unbounded domain by supposing Nekvinda's decay condition on <span><math><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>. The second part is devoted to the properties of the operator and it turns out that it is bounded, continuous, strictly monotone, of type (S<sub>+</sub>), coercive and a homeomorphism. Also, the related energy functional is of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>. As a result of independent interest we also present a new version of Young's inequality for the product of a power-law and a logarithm. In the last part of this work we consider equations of the form<span><span><span><math><mi>G</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi></math></span></span></span> with superlinear right-hand sides. We prove multiplicity results for this type of equation, in particular about sign-changing solutions, by making use of a suitable variation of the corresponding Nehari manifold together with the quantitative deformation lemma and the Poincaré-Miranda existence theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"433 ","pages":"Article 113247"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002621","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we introduce a new logarithmic double phase type operator of the form whose energy functional is given by where , , is a bounded domain with Lipschitz boundary ∂Ω, with for all and . First, we prove that the logarithmic Musielak-Orlicz Sobolev spaces and with for are separable, reflexive Banach spaces and can be equipped with the equivalent norm We also prove several embedding results for these spaces and the closedness of and under truncations. In addition we show the density of smooth functions in even in the case of an unbounded domain by supposing Nekvinda's decay condition on . The second part is devoted to the properties of the operator and it turns out that it is bounded, continuous, strictly monotone, of type (S+), coercive and a homeomorphism. Also, the related energy functional is of class . As a result of independent interest we also present a new version of Young's inequality for the product of a power-law and a logarithm. In the last part of this work we consider equations of the form with superlinear right-hand sides. We prove multiplicity results for this type of equation, in particular about sign-changing solutions, by making use of a suitable variation of the corresponding Nehari manifold together with the quantitative deformation lemma and the Poincaré-Miranda existence theorem.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics