Predicting the spatial distribution of reducing sugars using near-infrared hyperspectral imaging and chemometrics: a study in multiple potato genotypes

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Carlos Miguel Peraza-Alemán , Silvia Arazuri , Carmen Jarén , Jose Ignacio Ruiz de Galarreta , Leire Barandalla , Ainara López-Maestresalas
{"title":"Predicting the spatial distribution of reducing sugars using near-infrared hyperspectral imaging and chemometrics: a study in multiple potato genotypes","authors":"Carlos Miguel Peraza-Alemán ,&nbsp;Silvia Arazuri ,&nbsp;Carmen Jarén ,&nbsp;Jose Ignacio Ruiz de Galarreta ,&nbsp;Leire Barandalla ,&nbsp;Ainara López-Maestresalas","doi":"10.1016/j.compag.2025.110323","DOIUrl":null,"url":null,"abstract":"<div><div>The determination of reducing sugars in potatoes is important due to their impact on product quality during industrial processing. The significant variability of these compounds between genotypes presents a challenge to the development of accurate predictive models. This study evaluated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of reducing sugars in potatoes. For this, a wide range of genotypes (n = 92) from two seasons (2020–2021) was selected. Partial Least Squares Regression (PLSR) and Support Vector Machine Regression (SVMR) methods were used to build the prediction models. Furthermore, interval PLS (iPLS), recursive weighted PLS (rPLS), Genetic Algorithm (GA) and Competitive Adaptive Reweighted Sampling (CARS) were used for relevant wavelength identification to develop less computationally complex models. The best full spectrum model (SNV-PLSR) achieved coefficient of determination and root mean square error values of 0.88 and 0.053 % and 0.86 and 0.057 %, for calibration and external validation, respectively. Variable selection algorithms successfully reduced the dimensionality of the data without compromising the performance of the models. Robust predicted models were built with only 2.65 % (CARS-PLSR) and 3.57 % (iPLS-SVMR) of the total wavelengths. Finally, a pixel-wise prediction was performed on the validation set and chemical images were built to visualise the spatial distribution of reducing sugars. This study demonstrated that NIR-HSI is a feasible technique for predicting reducing sugars in several potato genotypes.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"235 ","pages":"Article 110323"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925004296","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The determination of reducing sugars in potatoes is important due to their impact on product quality during industrial processing. The significant variability of these compounds between genotypes presents a challenge to the development of accurate predictive models. This study evaluated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of reducing sugars in potatoes. For this, a wide range of genotypes (n = 92) from two seasons (2020–2021) was selected. Partial Least Squares Regression (PLSR) and Support Vector Machine Regression (SVMR) methods were used to build the prediction models. Furthermore, interval PLS (iPLS), recursive weighted PLS (rPLS), Genetic Algorithm (GA) and Competitive Adaptive Reweighted Sampling (CARS) were used for relevant wavelength identification to develop less computationally complex models. The best full spectrum model (SNV-PLSR) achieved coefficient of determination and root mean square error values of 0.88 and 0.053 % and 0.86 and 0.057 %, for calibration and external validation, respectively. Variable selection algorithms successfully reduced the dimensionality of the data without compromising the performance of the models. Robust predicted models were built with only 2.65 % (CARS-PLSR) and 3.57 % (iPLS-SVMR) of the total wavelengths. Finally, a pixel-wise prediction was performed on the validation set and chemical images were built to visualise the spatial distribution of reducing sugars. This study demonstrated that NIR-HSI is a feasible technique for predicting reducing sugars in several potato genotypes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信