Yang Yue , Chao Ma , Yan Zhang , Wei-hua Ma , Jing-jing Wang , Zhen-ya Tian , Guang-mei Chen , Ru-wen Li , Jin-hua Li , Jing-fang Yang , Zhong-shi Zhou
{"title":"Functional analysis of Ophraella communa Lesage OcomOBP11 in recognition of Ambrosia artemisiifolia L. volatiles","authors":"Yang Yue , Chao Ma , Yan Zhang , Wei-hua Ma , Jing-jing Wang , Zhen-ya Tian , Guang-mei Chen , Ru-wen Li , Jin-hua Li , Jing-fang Yang , Zhong-shi Zhou","doi":"10.1016/j.pestbp.2025.106392","DOIUrl":null,"url":null,"abstract":"<div><div>Odorant binding proteins (OBPs) play a critical role in insect survival by facilitating the detection of environmental odors. This study identified and characterized <em>OcomOBP11</em> in the leaf beetle <em>Ophraella communa</em> Lesage. Sequence and phylogenetic analyses demonstrated that <em>OcomOBP11</em> belongs to the Minus-C OBP family. Tissue-specific expression analysis revealed that <em>OcomOBP11</em> showed the highest relative expression in the testis. Functional assays demonstrated that OcomOBP11 has strong binding affinity to 24 of the 26 volatiles from <em>Ambrosia artemisiifolia</em> L., a primary host plant. Molecular docking showed that OcomOBP11 formed hydrophobic interactions with β-caryophyllene, α-pinene, camphene, octanal, and nonanal and hydrogen bonds with octanal and nonanal. RNAi-mediated knockdown of OcomOBP11 significantly reduced the electrophysiological (EAG) response and behavioral preference of <em>O. communa</em> for these ligands. These findings suggest that OcomOBP11 plays an important role in host plant localization, thus providing guidance for future biological invasion control strategies.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"210 ","pages":"Article 106392"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525001051","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Odorant binding proteins (OBPs) play a critical role in insect survival by facilitating the detection of environmental odors. This study identified and characterized OcomOBP11 in the leaf beetle Ophraella communa Lesage. Sequence and phylogenetic analyses demonstrated that OcomOBP11 belongs to the Minus-C OBP family. Tissue-specific expression analysis revealed that OcomOBP11 showed the highest relative expression in the testis. Functional assays demonstrated that OcomOBP11 has strong binding affinity to 24 of the 26 volatiles from Ambrosia artemisiifolia L., a primary host plant. Molecular docking showed that OcomOBP11 formed hydrophobic interactions with β-caryophyllene, α-pinene, camphene, octanal, and nonanal and hydrogen bonds with octanal and nonanal. RNAi-mediated knockdown of OcomOBP11 significantly reduced the electrophysiological (EAG) response and behavioral preference of O. communa for these ligands. These findings suggest that OcomOBP11 plays an important role in host plant localization, thus providing guidance for future biological invasion control strategies.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.