{"title":"On fractional p(⋅)-Schrödinger-Kirchhoff equations with the critical exponent in RN","authors":"Shuai Li , Tianqing An , Weichun Bu","doi":"10.1016/j.jmaa.2025.129502","DOIUrl":null,"url":null,"abstract":"<div><div>In the present paper, we discuss a class of critical Schrödinger-Kirchhoff type problem involving the fractional <span><math><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>-Laplacian. Firstly, for the critical case, we analyze the loss of compactness of the problem using the famous concentration-compactness principles. Next, the existence of nontrivial solutions is derived by utilizing the Nehari manifold approach. Finally, a simple example is given to show the validity of our main theorem's conditions. Our study improves and extends some recent work in the literature.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129502"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002835","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper, we discuss a class of critical Schrödinger-Kirchhoff type problem involving the fractional -Laplacian. Firstly, for the critical case, we analyze the loss of compactness of the problem using the famous concentration-compactness principles. Next, the existence of nontrivial solutions is derived by utilizing the Nehari manifold approach. Finally, a simple example is given to show the validity of our main theorem's conditions. Our study improves and extends some recent work in the literature.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.