Global long time uniform well-posedness of 3D incompressible Navier-Stokes equations under time-independent uniqueness condition

IF 2.4 2区 数学 Q1 MATHEMATICS
Xinglong Feng , Yinnian He
{"title":"Global long time uniform well-posedness of 3D incompressible Navier-Stokes equations under time-independent uniqueness condition","authors":"Xinglong Feng ,&nbsp;Yinnian He","doi":"10.1016/j.jde.2025.113254","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, inspired by the uniqueness condition of the 3D steady incompressible Navier-Stokes equations, we present a time-independent uniqueness condition depending on <span><math><mo>(</mo><mi>ν</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> with <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>=</mo><msub><mrow><mi>sup</mi></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub><mo>⁡</mo><msub><mrow><mo>‖</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mn>0</mn><mo>,</mo><mi>Ω</mi></mrow></msub></math></span> and consider the fully discrete Galerkin method for the 3D time-dependent incompressible Navier-Stokes equations in the infinite time interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. Furthermore, we provide the long time uniform stability and convergence of the fully discrete Galerkin solution and obtain the global uniform well-posedness (or the existence, uniqueness and long time stability of the solution) of the 3D time-dependent incompressible Navier-Stokes equations under the time-independent uniqueness condition by use of the compact theorem and a new a priori estimate of the fully discrete Galerkin solution.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113254"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500275X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, inspired by the uniqueness condition of the 3D steady incompressible Navier-Stokes equations, we present a time-independent uniqueness condition depending on (ν,u0,f,Ω) with f=supt0f(t)0,Ω and consider the fully discrete Galerkin method for the 3D time-dependent incompressible Navier-Stokes equations in the infinite time interval [0,). Furthermore, we provide the long time uniform stability and convergence of the fully discrete Galerkin solution and obtain the global uniform well-posedness (or the existence, uniqueness and long time stability of the solution) of the 3D time-dependent incompressible Navier-Stokes equations under the time-independent uniqueness condition by use of the compact theorem and a new a priori estimate of the fully discrete Galerkin solution.
三维不可压缩Navier-Stokes方程在时间无关唯一性条件下的全局长时间一致适定性
本文在三维稳定不可压缩Navier-Stokes方程的唯一性条件的启发下,给出了一个依赖于(ν,u0,f∞,Ω)且f∞=supt≥0′‖f(t)‖0,Ω的与时间无关的唯一性条件,并考虑了三维时变不可压缩Navier-Stokes方程在无限时间区间[0,∞)上的完全离散Galerkin方法。在此基础上,利用紧致定理和全离散Galerkin解的一个新的先验估计,给出了全离散Galerkin解的长时间一致稳定性和收敛性,得到了三维时变不可压缩Navier-Stokes方程在时间独立唯一性条件下的全局一致适定性(或解的存在唯一性和长时间稳定性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信