Connections and Finsler geometry of the structure group of a JB-algebra

IF 1.2 3区 数学 Q1 MATHEMATICS
Gabriel Larotonda , José Luna
{"title":"Connections and Finsler geometry of the structure group of a JB-algebra","authors":"Gabriel Larotonda ,&nbsp;José Luna","doi":"10.1016/j.jmaa.2025.129506","DOIUrl":null,"url":null,"abstract":"<div><div>We endow the Banach-Lie structure group <span><math><mi>S</mi><mi>t</mi><mi>r</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> of an infinite dimensional JB-algebra <em>V</em> with a left-invariant connection and Finsler metric, and we compute all the quantities of its connection. We show how this connection reduces to <span><math><mi>G</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, the group of transformations that preserve the positive cone Ω of the algebra <em>V</em>, and to <span><math><mi>A</mi><mi>u</mi><mi>t</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, the group of Jordan automorphisms of the algebra. We present the cone Ω as a homogeneous space for the action of <span><math><mi>G</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, therefore inducing a quotient Finsler metric and distance. With the techniques introduced, we prove the minimality of the one-parameter groups in Ω for any symmetric gauge norm in <em>V</em>. We establish that the two presentations of the Finsler metric in Ω give the same distance there, which helps us prove the minimality of certain paths in <span><math><mi>G</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> for its left-invariant Finsler metric.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129506"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002872","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We endow the Banach-Lie structure group Str(V) of an infinite dimensional JB-algebra V with a left-invariant connection and Finsler metric, and we compute all the quantities of its connection. We show how this connection reduces to G(Ω), the group of transformations that preserve the positive cone Ω of the algebra V, and to Aut(V), the group of Jordan automorphisms of the algebra. We present the cone Ω as a homogeneous space for the action of G(Ω), therefore inducing a quotient Finsler metric and distance. With the techniques introduced, we prove the minimality of the one-parameter groups in Ω for any symmetric gauge norm in V. We establish that the two presentations of the Finsler metric in Ω give the same distance there, which helps us prove the minimality of certain paths in G(Ω) for its left-invariant Finsler metric.
jb -代数结构群的连接与Finsler几何
我们赋予无限维j -代数V的Banach-Lie结构群Str(V)具有左不变连接和Finsler度量,并计算了其连接的所有量。我们展示了这种联系如何简化为G(Ω),即保持代数V的正锥Ω的变换群,以及Aut(V),即代数的Jordan自同构群。我们将锥Ω表示为G(Ω)作用的齐次空间,因此导出一个商Finsler度量和距离。利用引入的技术,我们证明了对于v中任何对称规范范数Ω中单参数群的极小性。我们建立了Ω中Finsler度量的两个表示在那里给出了相同的距离,这有助于我们证明G(Ω)中某些路径对于其左不变Finsler度量的极小性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信