{"title":"Global dynamics of Liénard systems with arbitrary degrees","authors":"Hebai Chen, Zhijie Li, Yu Xiao, Xin Yang","doi":"10.1016/j.jmaa.2025.129503","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is to study global dynamics of Liénard systems with arbitrary degrees <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mi>y</mi></math></span>, <span><math><mover><mrow><mi>y</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mi>y</mi></math></span>. The complex and rich dynamics are presented, in particular, including double limit cycle bifurcation, Hopf bifurcation, homoclinic bifurcation and heteroclinic bifurcation. We illustrate theoretical results by numerical simulations.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129503"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002847","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to study global dynamics of Liénard systems with arbitrary degrees , . The complex and rich dynamics are presented, in particular, including double limit cycle bifurcation, Hopf bifurcation, homoclinic bifurcation and heteroclinic bifurcation. We illustrate theoretical results by numerical simulations.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.