{"title":"Fractional mean field equations: Theory and application on finite graphs","authors":"Yang Liu","doi":"10.1016/j.jde.2025.113264","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the author introduces a nonlocal perspective by incorporating the fractional Laplacian <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span>, and considers the fractional mean field equation on a finite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, say<span><span><span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>ρ</mi><mrow><mo>(</mo><mfrac><mrow><mi>h</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup></mrow><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>V</mi></mrow></msub><mi>h</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mi>d</mi><mi>μ</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>V</mi><mo>,</mo></math></span></span></span> where <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mi>ρ</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>∪</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> are some fixed parameters, <em>h</em> denotes a given real value function on <em>V</em>. Based on the sign of the prescribed function <em>h</em>, using various methods such as variational method, topological degree and two mean field type heat flows, the author obtains the existence of solutions for the above problem in three cases respectively. These results extend the relevant research of Lin-Yang (Calc. Var., 2021), Sun-Wang (Adv. Math., 2022) and Liu-Zhang (J. Math. Anal. Appl., 2023) in the case of <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span>, and potentially broaden the understanding and application of fractional operators in discrete mathematical structures, emphasizing connections to both continuous and discrete theories.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113264"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002918","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the author introduces a nonlocal perspective by incorporating the fractional Laplacian , and considers the fractional mean field equation on a finite graph , say where , are some fixed parameters, h denotes a given real value function on V. Based on the sign of the prescribed function h, using various methods such as variational method, topological degree and two mean field type heat flows, the author obtains the existence of solutions for the above problem in three cases respectively. These results extend the relevant research of Lin-Yang (Calc. Var., 2021), Sun-Wang (Adv. Math., 2022) and Liu-Zhang (J. Math. Anal. Appl., 2023) in the case of , and potentially broaden the understanding and application of fractional operators in discrete mathematical structures, emphasizing connections to both continuous and discrete theories.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics