{"title":"Bounded and periodic solutions of quasilinear parabolic equations in time-dependent domains","authors":"Mitsuhiro Nakao","doi":"10.1016/j.jde.2025.02.048","DOIUrl":null,"url":null,"abstract":"<div><div>We show the existence and uniqueness of the bounded or periodic solution for the quasilinear parabolic equation of the form<span><span><span>(1.1)</span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mtext>div</mtext><mrow><mo>(</mo><mi>σ</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mtext> in </mtext><mi>Q</mi><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>∞</mo><mo>)</mo></math></span></span></span> with the boundary condition <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><mo>∂</mo><mi>Ω</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msub><mo>=</mo><mn>0</mn></math></span>, where <span><math><mi>Ω</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> for each <span><math><mi>t</mi><mo>∈</mo><mi>R</mi></math></span> and <span><math><mi>Q</mi><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>∞</mo><mo>)</mo><mo>=</mo><msub><mrow><mo>∪</mo></mrow><mrow><mo>−</mo><mo>∞</mo><mo><</mo><mi>t</mi><mo><</mo><mo>∞</mo></mrow></msub><mi>Ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>×</mo><mo>{</mo><mi>t</mi><mo>}</mo></math></span>. Typical examples of <em>σ</em> are <span><math><mi>σ</mi><mo>(</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mi>m</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>σ</mi><mo>(</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mtext>log</mtext><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> and <span><math><mi>σ</mi><mo>(</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>,</mo><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. We derive a precise estimate for <span><math><msub><mrow><mi>sup</mi></mrow><mrow><mo>−</mo><mo>∞</mo><mo><</mo><mi>t</mi><mo><</mo><mo>∞</mo></mrow></msub><mo></mo><msub><mrow><mo>‖</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mo>∞</mo></mrow></msub></math></span> depending on <span><math><msub><mrow><mi>sup</mi></mrow><mrow><mo>−</mo><mo>∞</mo><mo><</mo><mi>t</mi><mo><</mo><mo>∞</mo></mrow></msub><mo></mo><msub><mrow><mo>‖</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mi>Ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mo>∞</mo></mrow></msub></math></span> and the movement of <span><math><mo>∂</mo><mi>Ω</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"436 ","pages":"Article 113177"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001664","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show the existence and uniqueness of the bounded or periodic solution for the quasilinear parabolic equation of the form(1.1) with the boundary condition , where is a bounded domain in for each and . Typical examples of σ are and . We derive a precise estimate for depending on and the movement of .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics