pytRIBS: An open, modular, and reproducible python-based framework for distributed hydrologic modeling

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
L. Wren Raming , Enrique R. Vivoni , C. Josh Cederstrom , M. Akram Hossain , Jose A. Becerra
{"title":"pytRIBS: An open, modular, and reproducible python-based framework for distributed hydrologic modeling","authors":"L. Wren Raming ,&nbsp;Enrique R. Vivoni ,&nbsp;C. Josh Cederstrom ,&nbsp;M. Akram Hossain ,&nbsp;Jose A. Becerra","doi":"10.1016/j.envsoft.2025.106432","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed hydrologic models (DHM) are essential tools for understanding how and where water moves through a landscape. However, DHMs can be time-consuming and challenging to setup, limiting their application. Here, we present pytRIBS, a tool that addresses these challenges for the TIN-based Real-time Integrated Basin Simulator (tRIBS). pytRIBS is an open-source Python package with an object-oriented design intended to initialize, execute, and analyze tRIBS simulations. This package mirrors a tRIBS workflow with five preprocessing classes (Project, Mesh, Soil, Land, and Met) that can be used together or separately to obtain and convert data into a tRIBS format. Finally, the Results class manages outputs, provides analytical tools, and visualizes results. We illustrate these capabilities with an example case study of the Newman Canyon watershed, AZ, USA.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106432"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001161","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed hydrologic models (DHM) are essential tools for understanding how and where water moves through a landscape. However, DHMs can be time-consuming and challenging to setup, limiting their application. Here, we present pytRIBS, a tool that addresses these challenges for the TIN-based Real-time Integrated Basin Simulator (tRIBS). pytRIBS is an open-source Python package with an object-oriented design intended to initialize, execute, and analyze tRIBS simulations. This package mirrors a tRIBS workflow with five preprocessing classes (Project, Mesh, Soil, Land, and Met) that can be used together or separately to obtain and convert data into a tRIBS format. Finally, the Results class manages outputs, provides analytical tools, and visualizes results. We illustrate these capabilities with an example case study of the Newman Canyon watershed, AZ, USA.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信