{"title":"Winter driving range optimization of electric bus based on CO2 thermal management system and thermal energy cascade utilization","authors":"Kaicheng He, Yulong Song, Hongsheng Xie, Feng Cao","doi":"10.1016/j.energy.2025.135668","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental pollution and the energy crisis are intensifying. Pure electric vehicles (EVs) are promising alternatives to traditional internal combustion engine vehicles (ICEVs), but a significant decrease in winter driving range challenges their adoption. This paper proposes an integrated CO<sub>2</sub> thermal management system with a waste heat recovery mode(WHR-CO<sub>2</sub> TMS) for buses, addressing cabin, motor, and battery thermal management. By harnessing motor waste heat and preheating the battery, we optimize winter driving range. The study compares four systems between −20 °C and −10 °C: PTC heating system, CO<sub>2</sub> heat pump system, WHR-CO<sub>2</sub> TMS, WHR-CO<sub>2</sub> TMS with battery preheating. Key findings include: a. Replacing PTC heating system with a CO<sub>2</sub> heat pump system increases driving range by 10.37 %–12.90 %. b. Motor waste heat recovery enhances CO<sub>2</sub> heat pump performance, increasing COP by 6.97 %–11.13 %, and improves driving range by 19.14 %–20.90 %. c. Preheating the battery reduces range decay by 8.73 %–13.26 %, leading to a range improvement of 19.47 %–21.60 % compared to PTC heating system. d. A scheme is proposed to adjust battery preheating based on driving distance and ambient temperature. The results highlight the potential of integrated TMS for enhancing the winter driving range of electric buses.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"323 ","pages":"Article 135668"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225013106","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental pollution and the energy crisis are intensifying. Pure electric vehicles (EVs) are promising alternatives to traditional internal combustion engine vehicles (ICEVs), but a significant decrease in winter driving range challenges their adoption. This paper proposes an integrated CO2 thermal management system with a waste heat recovery mode(WHR-CO2 TMS) for buses, addressing cabin, motor, and battery thermal management. By harnessing motor waste heat and preheating the battery, we optimize winter driving range. The study compares four systems between −20 °C and −10 °C: PTC heating system, CO2 heat pump system, WHR-CO2 TMS, WHR-CO2 TMS with battery preheating. Key findings include: a. Replacing PTC heating system with a CO2 heat pump system increases driving range by 10.37 %–12.90 %. b. Motor waste heat recovery enhances CO2 heat pump performance, increasing COP by 6.97 %–11.13 %, and improves driving range by 19.14 %–20.90 %. c. Preheating the battery reduces range decay by 8.73 %–13.26 %, leading to a range improvement of 19.47 %–21.60 % compared to PTC heating system. d. A scheme is proposed to adjust battery preheating based on driving distance and ambient temperature. The results highlight the potential of integrated TMS for enhancing the winter driving range of electric buses.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.