Optimization of thermal resistance and thermal deformation in high heat-load zone of blast furnace cooling staves

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Haifeng Chen, Yuling Zhai, Hao Huang, Zhouhang Li, Hua Wang
{"title":"Optimization of thermal resistance and thermal deformation in high heat-load zone of blast furnace cooling staves","authors":"Haifeng Chen,&nbsp;Yuling Zhai,&nbsp;Hao Huang,&nbsp;Zhouhang Li,&nbsp;Hua Wang","doi":"10.1016/j.applthermaleng.2025.126292","DOIUrl":null,"url":null,"abstract":"<div><div>Blast furnace longevity is critically limited by the degradation of cooling staves in high heat-load zones, where excessive thermal deformation and inefficient heat dissipation accelerate structural failure. Proper temperature control of these staves is essential to mitigate such issues. The total thermal resistance from furnace gas to the environment consists of fixed and optimizable components. While the fixed thermal resistance is inherent to the furnace design, the optimizable convective resistance between working fluids and tube walls remains a key target for improvement, as conventional cooling methods (e.g., water in smooth tubes) struggle to balance heat extraction efficiency with mechanical durability under extreme thermal loads. Here, numerical simulations investigate the thermal performance of four configurations: water, CuO/water nanofluid, and Al<sub>2</sub>O<sub>3</sub>/water nanofluid in smooth or internally-ribbed tubes. Compared to the baseline (water in smooth tubes), the synergistic combination of 5 vol% Al<sub>2</sub>O<sub>3</sub>/water nanofluid and internally-ribbed tubes reduced optimizable thermal resistance by 72.03% and maximum thermal deformation by 17.58%, while increasing the heat transfer coefficient by 169.11%. These improvements stem from two mechanisms: (1) rib-induced asymmetrical vortices and swirling flows that disrupt thermal boundary layers and enhance fluid mixing, and (2) nanoparticle-driven conductive pathways that augment heat transfer via liquid-nanoparticle interactions. The results demonstrate a promising strategy to address the longstanding challenge of cooling stave degradation in blast furnaces, directly linking reduced thermal resistance to lower wall temperatures and suppressed deformation—critical factors for extending furnace lifespan.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"271 ","pages":"Article 126292"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125008841","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Blast furnace longevity is critically limited by the degradation of cooling staves in high heat-load zones, where excessive thermal deformation and inefficient heat dissipation accelerate structural failure. Proper temperature control of these staves is essential to mitigate such issues. The total thermal resistance from furnace gas to the environment consists of fixed and optimizable components. While the fixed thermal resistance is inherent to the furnace design, the optimizable convective resistance between working fluids and tube walls remains a key target for improvement, as conventional cooling methods (e.g., water in smooth tubes) struggle to balance heat extraction efficiency with mechanical durability under extreme thermal loads. Here, numerical simulations investigate the thermal performance of four configurations: water, CuO/water nanofluid, and Al2O3/water nanofluid in smooth or internally-ribbed tubes. Compared to the baseline (water in smooth tubes), the synergistic combination of 5 vol% Al2O3/water nanofluid and internally-ribbed tubes reduced optimizable thermal resistance by 72.03% and maximum thermal deformation by 17.58%, while increasing the heat transfer coefficient by 169.11%. These improvements stem from two mechanisms: (1) rib-induced asymmetrical vortices and swirling flows that disrupt thermal boundary layers and enhance fluid mixing, and (2) nanoparticle-driven conductive pathways that augment heat transfer via liquid-nanoparticle interactions. The results demonstrate a promising strategy to address the longstanding challenge of cooling stave degradation in blast furnaces, directly linking reduced thermal resistance to lower wall temperatures and suppressed deformation—critical factors for extending furnace lifespan.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信