Vapor density gradients near the sublimating interface of a carbon dioxide sphere

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
A.S. Purandare, G. Wennemars, S. Vanapalli
{"title":"Vapor density gradients near the sublimating interface of a carbon dioxide sphere","authors":"A.S. Purandare,&nbsp;G. Wennemars,&nbsp;S. Vanapalli","doi":"10.1016/j.ijheatmasstransfer.2025.126962","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the sublimation characteristics of dry ice particles exposed to convective heating in an unsaturated gaseous medium holds significance for applications employing cooling through dry ice sprays. While the transport phenomena between dry ice and its surrounding gas medium are central to various applications, a comprehensive understanding of these processes during dry ice sublimation remains incomplete. As a model problem, this study experimentally and numerically examines the sublimation of an isolated dry ice sphere within a controlled gas flow environment. Schlieren imaging is utilized in experiments to visualize density gradients at the dry ice–vapor interface for different <span><math><mi>CO</mi></math></span> <sub>2</sub> concentrations in the surrounding gas. An additional set of experiments involving backlight imaging is conducted to observe dry ice morphology and track its boundary over time. Numerical simulations using COMSOL Multiphysics software are performed to simulate the shrinkage of the sublimating dry ice sphere, accounting for heat, mass, and momentum transport in the gas mixture surrounding the dry ice. The numerical predictions of the density gradient near the sublimating dry ice interface exhibit qualitative agreement with the variations in light intensity observed in Schlieren images, thus confirming the predictive capabilities of the numerical model in this context. Furthermore, the numerical prediction of the temporal variation in dry ice mass closely aligns with experimental observations up to a certain duration, until the onset of frost formation on the dry ice surface, causing distortion in its morphology as evident in the images obtained during the experiments.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"245 ","pages":"Article 126962"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025003035","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the sublimation characteristics of dry ice particles exposed to convective heating in an unsaturated gaseous medium holds significance for applications employing cooling through dry ice sprays. While the transport phenomena between dry ice and its surrounding gas medium are central to various applications, a comprehensive understanding of these processes during dry ice sublimation remains incomplete. As a model problem, this study experimentally and numerically examines the sublimation of an isolated dry ice sphere within a controlled gas flow environment. Schlieren imaging is utilized in experiments to visualize density gradients at the dry ice–vapor interface for different CO 2 concentrations in the surrounding gas. An additional set of experiments involving backlight imaging is conducted to observe dry ice morphology and track its boundary over time. Numerical simulations using COMSOL Multiphysics software are performed to simulate the shrinkage of the sublimating dry ice sphere, accounting for heat, mass, and momentum transport in the gas mixture surrounding the dry ice. The numerical predictions of the density gradient near the sublimating dry ice interface exhibit qualitative agreement with the variations in light intensity observed in Schlieren images, thus confirming the predictive capabilities of the numerical model in this context. Furthermore, the numerical prediction of the temporal variation in dry ice mass closely aligns with experimental observations up to a certain duration, until the onset of frost formation on the dry ice surface, causing distortion in its morphology as evident in the images obtained during the experiments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信