Physics informed neural networks for solving inverse thermal wave coupled boundary-value problems

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Hong Tang , Alexander Melnikov , MingRui Liu , Stefano Sfarra , Hai Zhang , Andreas Mandelis
{"title":"Physics informed neural networks for solving inverse thermal wave coupled boundary-value problems","authors":"Hong Tang ,&nbsp;Alexander Melnikov ,&nbsp;MingRui Liu ,&nbsp;Stefano Sfarra ,&nbsp;Hai Zhang ,&nbsp;Andreas Mandelis","doi":"10.1016/j.ijheatmasstransfer.2025.126985","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the essential parameters in thermophysical analysis, effective measurement of thermal diffusivity is necessary. This paper utilizes the Physics-Informed Neural Networks (PINN) framework to simulate the diffusion of thermal waves. The governing equations / boundary-value problem (BVP) for the thermal waves are expressed in a coupled partial differential form, derived using the method of separation of variables. The inverse problem associated with the coupled partial differential equations is solved using a dimensionless equation / BVP with a loss function that incorporates physical information. Even in the presence of experimental system errors, the neural network (NN) method introduced in this work (“new NN method”) was shown to be capable of robustly solving the thermal wave inverse problem without nonlinear DC components at different spatial locations, for determining the unknown thermal diffusivity of green (unsintered) metal powder compact materials. The results indicate that the coupled partial differential equations for the amplitude and phase of thermal waves within the PINN framework represent a promising strategy for determining thermophysical parameters.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"245 ","pages":"Article 126985"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025003266","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the essential parameters in thermophysical analysis, effective measurement of thermal diffusivity is necessary. This paper utilizes the Physics-Informed Neural Networks (PINN) framework to simulate the diffusion of thermal waves. The governing equations / boundary-value problem (BVP) for the thermal waves are expressed in a coupled partial differential form, derived using the method of separation of variables. The inverse problem associated with the coupled partial differential equations is solved using a dimensionless equation / BVP with a loss function that incorporates physical information. Even in the presence of experimental system errors, the neural network (NN) method introduced in this work (“new NN method”) was shown to be capable of robustly solving the thermal wave inverse problem without nonlinear DC components at different spatial locations, for determining the unknown thermal diffusivity of green (unsintered) metal powder compact materials. The results indicate that the coupled partial differential equations for the amplitude and phase of thermal waves within the PINN framework represent a promising strategy for determining thermophysical parameters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信