Multiphysics simulation of tumor ablation in magnetic hyperthermia treatment

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Qian Jiang , Feng Ren , Chenglei Wang , Zhaokun Wang , Gholamreza Kefayati , Sasa Kenjeres , Kambiz Vafai , Xinguang Cui , Yang Liu , Hui Tang
{"title":"Multiphysics simulation of tumor ablation in magnetic hyperthermia treatment","authors":"Qian Jiang ,&nbsp;Feng Ren ,&nbsp;Chenglei Wang ,&nbsp;Zhaokun Wang ,&nbsp;Gholamreza Kefayati ,&nbsp;Sasa Kenjeres ,&nbsp;Kambiz Vafai ,&nbsp;Xinguang Cui ,&nbsp;Yang Liu ,&nbsp;Hui Tang","doi":"10.1016/j.ijheatmasstransfer.2025.126982","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic hyperthermia is a promising cancer treatment method that involves complex multiphysics phenomena, including interstitial tissue fluid flow, magnetic nanoparticle (MNP) transport, and temperature evolution. However, these intricate processes have rarely been studied simultaneously, primarily due to the lack of a comprehensive simulation tool. To address this issue, we develop a comprehensive numerical framework in this study. Using this framework, we simulate a circular-shaped tumor embedded in healthy tissue. The treatment process is examined under two scenarios: one considering gravity and the other neglecting it. Without gravity, the interstitial tissue flow remains stationary, and hence MNP transport and temperature evolution are determined solely by diffusion. The optimal treatment time, when the tumor cells are completely ablated, decreases with both the Lewis number and the heat source number, following a power law. When gravity is considered, treatment efficacy deteriorates due to buoyancy-induced MNP movement, significantly extending the time required to completely ablate the tumor cells. This required time increases with both the buoyancy ratio and the Darcy ratio, also following a power law. The results from this study could provide valuable guidelines for practical magnetic hyperthermia treatment.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"245 ","pages":"Article 126982"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025003230","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic hyperthermia is a promising cancer treatment method that involves complex multiphysics phenomena, including interstitial tissue fluid flow, magnetic nanoparticle (MNP) transport, and temperature evolution. However, these intricate processes have rarely been studied simultaneously, primarily due to the lack of a comprehensive simulation tool. To address this issue, we develop a comprehensive numerical framework in this study. Using this framework, we simulate a circular-shaped tumor embedded in healthy tissue. The treatment process is examined under two scenarios: one considering gravity and the other neglecting it. Without gravity, the interstitial tissue flow remains stationary, and hence MNP transport and temperature evolution are determined solely by diffusion. The optimal treatment time, when the tumor cells are completely ablated, decreases with both the Lewis number and the heat source number, following a power law. When gravity is considered, treatment efficacy deteriorates due to buoyancy-induced MNP movement, significantly extending the time required to completely ablate the tumor cells. This required time increases with both the buoyancy ratio and the Darcy ratio, also following a power law. The results from this study could provide valuable guidelines for practical magnetic hyperthermia treatment.
磁热疗中肿瘤消融的多物理场模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信