Quaternary Legendre pairs II

IF 0.7 3区 数学 Q2 MATHEMATICS
Ilias S. Kotsireas , Christoph Koutschan , Arne Winterhof
{"title":"Quaternary Legendre pairs II","authors":"Ilias S. Kotsireas ,&nbsp;Christoph Koutschan ,&nbsp;Arne Winterhof","doi":"10.1016/j.disc.2025.114501","DOIUrl":null,"url":null,"abstract":"<div><div>Quaternary Legendre pairs are pertinent to the construction of quaternary Hadamard matrices and have many applications, for example in coding theory and communications.</div><div>In contrast to binary Legendre pairs, quaternary ones can exist for even length <em>ℓ</em> as well. It is conjectured that there is a quaternary Legendre pair for any even <em>ℓ</em>. The smallest open case until now had been <span><math><mi>ℓ</mi><mo>=</mo><mn>28</mn></math></span>, and <span><math><mi>ℓ</mi><mo>=</mo><mn>38</mn></math></span> was the only length <em>ℓ</em> with <span><math><mn>28</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mn>60</mn></math></span> resolved before. Here we provide constructions for <span><math><mi>ℓ</mi><mo>=</mo><mn>28</mn><mo>,</mo><mn>30</mn><mo>,</mo><mn>32</mn></math></span>, and 34. In parallel and independently, Jedwab and Pender found a construction of quaternary Legendre pairs of length <span><math><mi>ℓ</mi><mo>=</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> for any prime power <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn></math></span>, which in particular covers <span><math><mi>ℓ</mi><mo>=</mo><mn>30</mn></math></span>, 36, and 40, so that now <span><math><mi>ℓ</mi><mo>=</mo><mn>42</mn></math></span> is the smallest unresolved case.</div><div>The main new idea of this paper is a way to separate the search for the subsequences along even and odd indices which substantially reduces the complexity of the search algorithm.</div><div>In addition, we use Galois theory for cyclotomic fields to derive conditions which improve the PSD test.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114501"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quaternary Legendre pairs are pertinent to the construction of quaternary Hadamard matrices and have many applications, for example in coding theory and communications.
In contrast to binary Legendre pairs, quaternary ones can exist for even length as well. It is conjectured that there is a quaternary Legendre pair for any even . The smallest open case until now had been =28, and =38 was the only length with 2860 resolved before. Here we provide constructions for =28,30,32, and 34. In parallel and independently, Jedwab and Pender found a construction of quaternary Legendre pairs of length =(q1)/2 for any prime power q1mod4, which in particular covers =30, 36, and 40, so that now =42 is the smallest unresolved case.
The main new idea of this paper is a way to separate the search for the subsequences along even and odd indices which substantially reduces the complexity of the search algorithm.
In addition, we use Galois theory for cyclotomic fields to derive conditions which improve the PSD test.
第四纪勒让德对2
四元勒让德对与四元阿达玛矩阵的构造有关,在编码理论和通信中有许多应用。与二元勒让德偶相反,四元偶也可以以偶数长度存在。我们推测对于任意偶数,存在一个四元勒让德对。到目前为止,最小的开放情况为,且长度为28≤,而长度为28≤,且长度为60的情况,只有在此之前得到了求解。在这里,我们提供了一个结构,它的值是28、30、32和34。Jedwab和Pender平行且独立地发现了一个长度为(q−1)/2的四元勒让德对的构造,对于任意素数幂q≡1mod4,它特别地涵盖了r =30、36和40,所以现在r =42是最小的未解情况。本文的主要新思想是将子序列沿奇偶索引的搜索分离,从而大大降低了搜索算法的复杂度。此外,我们利用伽罗瓦理论推导出改进PSD检验的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信