Dense, irregular, yet always-graphic 3-uniform hypergraph degree sequences

IF 0.7 3区 数学 Q2 MATHEMATICS
Runze Li , István Miklós
{"title":"Dense, irregular, yet always-graphic 3-uniform hypergraph degree sequences","authors":"Runze Li ,&nbsp;István Miklós","doi":"10.1016/j.disc.2025.114498","DOIUrl":null,"url":null,"abstract":"<div><div>A 3-uniform hypergraph is a generalization of a simple graph where each hyperedge is a subset of exactly three vertices. The degree of a vertex in a hypergraph is the number of hyperedges incident with it. The degree sequence of a hypergraph is the sequence of the degrees of its vertices. The degree sequence problem for 3-uniform hypergraphs asks whether a 3-uniform hypergraph with a given degree sequence exists. Such a hypergraph is called a realization. Recently, Deza et al. proved that this problem is NP-complete. Although some special cases are simple, polynomial-time algorithms are only known for highly restricted degree sequences. The main result of our research is the following: if all degrees in a sequence <em>D</em> of length <em>n</em> are between <span><math><mfrac><mrow><mn>2</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>63</mn></mrow></mfrac><mo>+</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mfrac><mrow><mn>5</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>63</mn></mrow></mfrac><mo>−</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, the number of vertices is at least 45, and the degree sum is divisible by 3, then <em>D</em> has a 3-uniform hypergraph realization. Our proof is constructive, providing a polynomial-time algorithm for constructing such a hypergraph. To our knowledge, this is the first polynomial-time algorithm to construct a 3-uniform hypergraph realization of a highly irregular and dense degree sequence.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114498"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001062","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A 3-uniform hypergraph is a generalization of a simple graph where each hyperedge is a subset of exactly three vertices. The degree of a vertex in a hypergraph is the number of hyperedges incident with it. The degree sequence of a hypergraph is the sequence of the degrees of its vertices. The degree sequence problem for 3-uniform hypergraphs asks whether a 3-uniform hypergraph with a given degree sequence exists. Such a hypergraph is called a realization. Recently, Deza et al. proved that this problem is NP-complete. Although some special cases are simple, polynomial-time algorithms are only known for highly restricted degree sequences. The main result of our research is the following: if all degrees in a sequence D of length n are between 2n263+O(n) and 5n263O(n), the number of vertices is at least 45, and the degree sum is divisible by 3, then D has a 3-uniform hypergraph realization. Our proof is constructive, providing a polynomial-time algorithm for constructing such a hypergraph. To our knowledge, this is the first polynomial-time algorithm to construct a 3-uniform hypergraph realization of a highly irregular and dense degree sequence.
密集的,不规则的,但总是-图形-均匀的超图度序列
3-均匀超图是一个简单图的推广,其中每个超边是恰好三个顶点的子集。超图中一个顶点的度数是与它相关的超边的个数。超图的度数序列是其顶点的度数序列。3-一致超图的度序列问题是问具有给定度序列的3-一致超图是否存在。这样的超图称为实现。最近,Deza等人证明了这个问题是np完全的。虽然一些特殊情况很简单,但多项式时间算法只适用于高度受限次序列。我们研究的主要结果是:如果长度为n的序列D中所有度都在2n263+O(n)和5n263−O(n)之间,顶点数至少为45,且度和能被3整除,则D具有3-均匀超图实现。我们的证明是建设性的,为构造这样一个超图提供了一个多项式时间算法。据我们所知,这是第一个构建高度不规则和密集度序列的3-均匀超图实现的多项式时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信