A Review of BioTree Construction in the Context of Information Fusion: Priors, Methods, Applications and Trends

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zelin Zang , Yongjie Xu , Chenrui Duan , Yue Yuan , Yue Shen , Jinlin Wu , Zhen Lei , Stan Z. Li
{"title":"A Review of BioTree Construction in the Context of Information Fusion: Priors, Methods, Applications and Trends","authors":"Zelin Zang ,&nbsp;Yongjie Xu ,&nbsp;Chenrui Duan ,&nbsp;Yue Yuan ,&nbsp;Yue Shen ,&nbsp;Jinlin Wu ,&nbsp;Zhen Lei ,&nbsp;Stan Z. Li","doi":"10.1016/j.inffus.2025.103108","DOIUrl":null,"url":null,"abstract":"<div><div>Biological tree (BioTree) analysis is a foundational tool in biology, enabling the exploration of evolutionary and differentiation relationships among organisms, genes, and cells. Traditional tree construction methods, while instrumental in early research, face significant challenges in handling the growing complexity and scale of modern biological data, particularly in integrating multimodal datasets. Advances in deep learning (DL) offer transformative opportunities by enabling the fusion of biological prior knowledge with data-driven models. These approaches address key limitations of traditional methods, facilitating the construction of more accurate and interpretable BioTrees. This review highlights critical biological priors essential for phylogenetic and differentiation tree analyses and explores strategies for integrating these priors into DL models to enhance accuracy and interpretability. Additionally, the review systematically examines commonly used data modalities and databases, offering a valuable resource for developing and evaluating multimodal fusion models. Traditional tree construction methods are critically assessed, focusing on their biological assumptions, technical limitations, and scalability issues. Recent advancements in DL-based tree generation methods are reviewed, emphasizing their innovative approaches to multimodal integration and prior knowledge incorporation. Finally, the review discusses diverse applications of BioTrees in various biological disciplines, from phylogenetics to developmental biology, and outlines future trends in leveraging DL to advance BioTree research. By addressing the challenges of data complexity and prior knowledge integration, this review aims to inspire interdisciplinary innovation at the intersection of biology and DL.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"121 ","pages":"Article 103108"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525001812","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biological tree (BioTree) analysis is a foundational tool in biology, enabling the exploration of evolutionary and differentiation relationships among organisms, genes, and cells. Traditional tree construction methods, while instrumental in early research, face significant challenges in handling the growing complexity and scale of modern biological data, particularly in integrating multimodal datasets. Advances in deep learning (DL) offer transformative opportunities by enabling the fusion of biological prior knowledge with data-driven models. These approaches address key limitations of traditional methods, facilitating the construction of more accurate and interpretable BioTrees. This review highlights critical biological priors essential for phylogenetic and differentiation tree analyses and explores strategies for integrating these priors into DL models to enhance accuracy and interpretability. Additionally, the review systematically examines commonly used data modalities and databases, offering a valuable resource for developing and evaluating multimodal fusion models. Traditional tree construction methods are critically assessed, focusing on their biological assumptions, technical limitations, and scalability issues. Recent advancements in DL-based tree generation methods are reviewed, emphasizing their innovative approaches to multimodal integration and prior knowledge incorporation. Finally, the review discusses diverse applications of BioTrees in various biological disciplines, from phylogenetics to developmental biology, and outlines future trends in leveraging DL to advance BioTree research. By addressing the challenges of data complexity and prior knowledge integration, this review aims to inspire interdisciplinary innovation at the intersection of biology and DL.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信