Yi Zhang , Yundong Zhou , Weijuan Geng , Boyang Yan , Lei Hang , Jia He , Yufeng Gao
{"title":"The influence of SICP treatment composition on the performance of liquefaction resistance of soils","authors":"Yi Zhang , Yundong Zhou , Weijuan Geng , Boyang Yan , Lei Hang , Jia He , Yufeng Gao","doi":"10.1016/j.soildyn.2025.109397","DOIUrl":null,"url":null,"abstract":"<div><div>Soybean urease-induced calcium carbonate precipitation (SICP) is an innovative and eco-friendly approach with demonstrated potential for mitigating soil liquefaction. However, the specific impacts of the concentrations of soybean urease and salt solutions require further elucidation. The research examines how the two compositions influence calcium carbonate formation. Dynamic characteristics of one-cycle SICP-treated clean and silty sand were analyzed based on cyclic triaxial tests. It was revealed that SICP-treated specimens of both liquefied sand and silty sand exhibit reduced accumulation of excess pore pressure and diminished strain growth under cyclic loading, thereby delaying liquefaction failure. Although higher concentrations of both soybean urease and salt solution can enhance liquefaction resistance, salt solution concentration has a more pronounced effect on improving liquefaction resistance due to the more production of calcium carbonate. Scanning electron microscopy observations confirmed the presence of calcium carbonate crystals at the interfaces between sand particles and between sand and fine particles. These crystals effectively bond the loose sand and fine particles into a cohesive matrix, reinforcing soil structure. A direct linear correlation was established between the liquefaction resistance improvement and precipitated calcium carbonate content. Notably, the one-cycle SICP treatment method adopted in this study demonstrates a better biocementation effect compared to cement mortar or multi-cycle MICP-treated sand under the same content of cementitious materials. These findings provide valuable insights for optimizing SICP treatments, aiming to reduce the risk of soil liquefaction in potential field applications.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"195 ","pages":"Article 109397"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001903","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soybean urease-induced calcium carbonate precipitation (SICP) is an innovative and eco-friendly approach with demonstrated potential for mitigating soil liquefaction. However, the specific impacts of the concentrations of soybean urease and salt solutions require further elucidation. The research examines how the two compositions influence calcium carbonate formation. Dynamic characteristics of one-cycle SICP-treated clean and silty sand were analyzed based on cyclic triaxial tests. It was revealed that SICP-treated specimens of both liquefied sand and silty sand exhibit reduced accumulation of excess pore pressure and diminished strain growth under cyclic loading, thereby delaying liquefaction failure. Although higher concentrations of both soybean urease and salt solution can enhance liquefaction resistance, salt solution concentration has a more pronounced effect on improving liquefaction resistance due to the more production of calcium carbonate. Scanning electron microscopy observations confirmed the presence of calcium carbonate crystals at the interfaces between sand particles and between sand and fine particles. These crystals effectively bond the loose sand and fine particles into a cohesive matrix, reinforcing soil structure. A direct linear correlation was established between the liquefaction resistance improvement and precipitated calcium carbonate content. Notably, the one-cycle SICP treatment method adopted in this study demonstrates a better biocementation effect compared to cement mortar or multi-cycle MICP-treated sand under the same content of cementitious materials. These findings provide valuable insights for optimizing SICP treatments, aiming to reduce the risk of soil liquefaction in potential field applications.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.